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ABSTRACT

Sustained attention is essential for daily life and can be directed to information from different
perceptual modalities, including audition and vision. Recently, cognitive neuroscience has
aimed to identify neural predictors of behavior that generalize across datasets. Prior work has
shown strong generalization of models trained to predict individual differences in sustained
attention performance from patterns of fMRI functional connectivity. However, it is an open
question whether predictions of sustained attention are specific to the perceptual modality in
which they are trained. In the current study, we test whether connectome-based models predict
performance on attention tasks performed in different modalities. We show first that a predefined
network trained to predict adults’ visual sustained attention performance generalizes to
predict auditory sustained attention performance in three independent datasets (N1 = 29,
N2 = 60, N3 = 17). Next, we train new network models to predict performance on visual and
auditory attention tasks separately. We find that functional networks are largely modality general,
with both model-unique and shared model features predicting sustained attention performance
in independent datasets regardless of task modality. Results support the supposition that
visual and auditory sustained attention rely on shared neural mechanisms and demonstrate
robust generalizability of whole-brain functional network models of sustained attention.

AUTHOR SUMMARY

While previous work has demonstrated external validity of functional connectivity-based
networks for the prediction of cognitive and attentional performance, testing generalization
across visual and auditory perceptual modalities has been limited. The current study
demonstrates robust prediction of sustained attention performance, regardless of perceptual
modality models are trained or tested in. Results demonstrate that connectivity-based models
may generalize broadly, capturing variance in sustained attention performance that is
agnostic to the perceptual modality of model training.
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INTRODUCTION

The maintenance of attention to information over time is essential for daily activities such as
driving to work or conversing with friends. Recent work in cognitive neuroscience has been
aimed at identifying neural signatures of sustained attention ability with the goal of construct-
ing models that generalize across people and datasets to predict individual differences in
attention function. However, while sustained attention can be deployed to information from
multiple perceptual (e.g., visual and auditory) modalities, it is an open question whether pre-
dictive models generalize across modality. For example, models trained to predict perfor-
mance on visual sustained attention tasks may contain modality-specific features and therefore
fail to generalize or generalize poorly to capture auditory sustained attention performance.
Alternatively, features may capture modality-general aspects of attention and generalize
broadly. Here, we construct and test the generalizability of models trained to predict sustained
attention to visual and auditory stimuli from functional connections.

Identifying brain-based markers of cognition is beneficial both for understanding associa-
tions between functional brain organization and behavior and for developing predictive
models. Network neuroscience provides a framework for the identification of interpretable
neural signatures of cognition (Srivastava et al., 2022). One method, connectome-based pre-
dictive modeling (CPM), identifies functional connections, or edges, between brain regions
whose strength is reliably associated with phenotypes across individuals (Finn et al., 2015;
Rosenberg et al., 2016; Shen et al., 2017). This method has identified edge networks that pre-
dict sustained attention within and across samples of individuals (Rosenberg et al., 2016,
2020; Yoo et al., 2022).

The utility of predictive models lies in their external validity, that is, generalizability across
independent datasets and contexts (Poldrack et al., 2020; Rosenberg & Finn, 2022; Scheinost
et al., 2019). Successful generalizability across datasets ensures a model’s accuracy in the
identification of relevant features as well as robustness to differences between samples. Pre-
dictive models of sustained attention constructed using CPM have demonstrated generalizabil-
ity across datasets, as well as generalization to other attention tasks and attention-related
symptoms (Rosenberg et al., 2016, 2018, 2020; Yoo et al., 2022). Therefore, CPM successfully
captures functional networks related to attention across contexts.

Sustained attention is often measured using tasks that require continuous vigilance for the
detection or discrimination of rare stimuli (Langner & Eickhoff, 2013; Mackworth, 1948).
While much work has investigated sustained attention to visual stimuli, attention can be
deployed to other perceptual modalities, such as audition. Previous work has shown that
the ability to sustain attention to visual and auditory information is reliable within individuals,
suggesting that these abilities rely on shared cognitive mechanisms (Corriveau et al., 2024; Seli
et al., 2012; Terashima et al., 2021). Work using electroencephalography and fMRI data has
identified neural substrates underlying detection of both visual and auditory rare targets
(Katayama & Polich, 1999; Kim, 2014; Kondo et al., 2023; Linden et al., 1999; Stevens et al.,
2000), further supporting a modality-general neural basis of sustained attention. However,
recent work shows that neurometabolites are differentially related to auditory and visual sus-
tained attention (Kondo et al., 2023). Further, selective attention to visual or auditory informa-
tion elicits both supramodal and modality-specific neural activation patterns (Smith et al.,
2010; Stevens et al., 2000), suggesting that attending to these modalities relies on distinct
neural mechanisms as well. Therefore, the extent to which visual and auditory sustained atten-
tion networks are modality-specific may depend on the extent to which they rely on modality-
specific neural mechanisms.

Sustained attention:
The ability to maintain focus over
time, which differs between people
and fluctuates from moment-to-
moment.

Connectome-based predictive
modeling (CPM):
A technique that identifies functional
connections whose strength is related
to a phenotype of interest and uses
the strength of these connections to
predict the phenotype in novel
individuals.
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Here, we test the degree to which predictions from functional networks of sustained atten-
tion are biased by the perceptual modality in which they are trained. We find that a network
previously defined to predict visual sustained attention predicts performance across datasets
and modalities. Further, we show that models trained on auditory and visual tasks are highly
generalizable across perceptual modalities. Even after the removal of features identified by
both visual and auditory networks, that is, modality-general features, models successfully pre-
dict cross-modality sustained attention ability. These results demonstrate that sustained atten-
tion relies on distributed patterns of connectivity. Additionally, they suggest that distributed
patterns may be different between perceptual modality but still capture generalizable variance
in sustained attention ability across datasets and modalities.

METHODS

Dataset 1

The first dataset analyzed was described in detail by Kondo et al. (2022, 2023). This study was
reviewed and approved by the Research Ethics and Safety Committees of Chukyo University
and ATR-Promotions. Participants provided their written informed consent to participate in this
study.

Participants (N = 29, ages 20–35 years) were healthy Japanese adults who completed an
fMRI scan consisting of two visual runs and two auditory runs of a gradual-onset continuous
performance task (gradCPT; Esterman et al., 2013; Rosenberg et al., 2013; Terashima et al.,
2021). Data were collected using a 3T Magnetom Prisma MRI scanner (Siemens, Munich,
Germany). Task runs were 400 s in length. A multiband echo-planar imaging sequence
was used to collect 205 volumes per task run with a repetition time (TR) of 2 s. Voxels were
2 mm × 2 mm × 2 mm. The first five volumes of each run were discarded for data analysis.

The gradCPT was developed to measure sustained attention performance. In the task, stim-
uli gradually transition one into the next to avoid abrupt onsets. Visual runs of the gradCPT
featured round, grayscale images of city (90%) and mountain (10%) scenes. Images transi-
tioned from off to fully visible over 1.6 s such that a stimulus reached maximum visibility every
1.6 s. Images faded from peak visibility to off as presentation of the next image began. Partic-
ipants were instructed to press a button for each city scene and withhold a button press for
mountain scenes.

Stimuli for the auditory gradCPT were narrations from a foreign language database, exclud-
ing Japanese narrations to avoid presentation of a participant’s native language. Thus, partic-
ipants used acoustic clues of the stimuli, rather than semantic clues, to judge the gender of
voice streams. Narrations were performed by male (90%) and female (10%) voices and grad-
ually transitioned from one to the next using sinusoidal ramps (Terashima et al., 2021) such
that a voice reached maximum presentation every 1.6 s. Participants were instructed to press a
button for male voices and withhold a button press for female voices.

Because stimuli faded from one to the next, key presses were assigned to trials in an iter-
ative manner that first assigned unambiguous presses and then assigned more ambiguous
ones. Unambiguous key presses occurring in a window from 70% presented to 40% disap-
peared were assigned to the current trial. Key presses that occurred outside the window were
assigned to adjacent trials if no responses to those trials had been made. If no response was
made to either adjacent trial, the key press was attributed to the closer trial. If either trial was
an infrequent trial (mountain scene, female voice), the key press was assigned to the adjacent
frequent trial. Sustained attention performance was quantified using a measure of sensitivity (d 0),
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which is calculated as the normalized hit rate minus the normalized false alarm rate for
each run.

Dataset 2

The second dataset was collected at the MRI Research Center at the University of Chicago.
Study procedures were approved by the Social and Behavioral Sciences Institutional Review
Board at the University of Chicago. All participants provided their written informed consent
prior to participation.

Participants (N = 60) participated in at least one session of a two-session fMRI study
collected approximately 1 week apart (mean time between sessions = 10.88 days, SD =
9.87 days). During both sessions, participants performed a 10-min audio-visual continuous
performance task (avCPT; Corriveau et al., 2024). Functional MRI data were collected on a
3T Philips Ingenia scanner. Voxels were 2.526 mm × 2.526 mm × 3 mm. Volumes were
collected using a multiband sequence with a TR of 1 s. Three volumes were removed from
the start of each scan.

During the avCPT, streams of trial-unique images and sounds were presented simulta-
neously. Images were presented continuously for 1.2 s each, whereas sounds were presented
for 1 s with a 200-ms intertrial interval to allow participants to distinguish individual sounds.
Each task run was 500 trials in length. Images were indoor and outdoor scenes drawn from the
Scene UNderstanding image database (SUN; Xiao et al., 2010). Sound stimuli were natural
and manmade sounds drawn from online sound databases and cropped to be 1 s in length.
Full details of stimulus curation procedures are described in Corriveau et al. (2024).

Before the task run, participants were instructed to make a button press to frequent stimuli
(90%) from either the auditory or visual modality and to withhold a button press for infrequent
stimuli (10%). They were told that the stimuli from the other modality were not relevant for the
task. Over the two scan sessions, participants performed both the auditory-relevant and visual-
relevant tasks, and the order of task runs and frequent stimulus category was counterbalanced
across participants.

For frequent trials, correct responses were trials in which participants responded before the
onset of a new stimulus (within 1,200 ms of trial start). However, to allow for the possibility of
reaction times (RTs) longer than 1,200 ms, we reassigned key presses for frequent trials that met
the following criteria: (a) The participant made more than one key press for a trial with a
frequent-category stimulus, (b) the first key press was faster than 100 ms, and (c) no response
was made to the previous frequent-category stimulus. In this case, the first key press was attrib-
uted to the previous trial. This reassignment of key presses is meant to more accurately account
for correct performance with slower response times. Press reassignment was rare in both visual
(mean number of trials with presses reassigned = 0.548, SD = 0.861) and auditory sessions
(mean number of trials with presses reassigned = 3.81, SD = 3.46), affecting less than 0.8%
of the trials in each task. Therefore, this analytical decision has a negligible effect on results.
Performance during the avCPT was calculated as sensitivity (d 0).

Dataset 3

The final fMRI dataset analyzed was described in Walz et al. (2013) and shared on OpenNeuro
(ds000116). This dataset contained runs from 17 adults (six females, ages 20–40 years) who
performed three auditory and three visual runs of an oddball task. Simultaneous fMRI and elec-
troencephalography data were collected for the original study but only the fMRI data are
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analyzed here. Data were collected on a 3T Philips Achieva scanner. Voxels were 3 mm ×
3 mm × 4 mm. Each run consisted of 170 volumes collected with a 2-s TR. While the authors
note that discarding of extra runs is unnecessary for the shared data, the first three volumes of
each run were removed in keeping with a standard preprocessing pipeline. We do not expect
this to affect the current results.

Task runs consisted of 125 stimuli presented for 200 ms with a variable intertrial interval of
2–3 s. Participants were instructed to press a button for infrequent targets (20%) and could
ignore standard stimuli (80%). In visual runs, standard trials consisted of a small green circle
and target trials were the presentation of a large red circle. For auditory runs, the standard
stimulus was a 390-Hz tone, whereas the target stimulus was a broadband laser gun sound.

Because the response pattern for this task was inverted and responses were only required on
target trials, detection of oddball targets in this task is trivial, leading to overall high perfor-
mance. Therefore, sustained attention performance in this dataset was quantified using the
mean run RT variability, which has previously been shown to be robustly related to sustained
attention performance in both healthy adults and in populations characterized by sustained
attention deficits (Chidharom, Krieg, & Bonnefond, 2021; Esterman et al., 2013; Karamacoska
et al., 2018; Robertson et al., 1997; Seli et al., 2012; Tamm et al., 2012). Importantly, this
measure provides more variability across participants than a measure of sensitivity on a task
where performance is at ceiling, as in the current dataset. RT variability is predictive of sus-
tained attention ability such that individuals with more variable pressing show worse per-
formance on sustained attention tasks. Since RT variability has previously been shown to be
negatively related to sustained attention performance, we report the inverse of RT variability
(mean RT / standard deviation) for ease of comparison with Datasets 1 and 2 in the current study.

fMRI Preprocessing Procedure

Functional MRI data for the three datasets underwent the same preprocessing steps in AFNI
(Cox, 1996). Preprocessing included the following steps: Removal of leading TRs as previously
noted for individual datasets; alignment of functional data to MNI space; regression of covar-
iates of no interest, including a 24-parameter head motion model (six motion parameters, six
temporal derivatives, and their squares), mean signal from subject-level white matter and
ventricle masks, and mean whole-brain signal; and censoring of volumes for which the
derivative of motion parameters exceeded 0.25 mm or for which more than 10% of the brain
were outliers.

Exclusion Criteria

To ensure high-quality data, individual runs were excluded if they did not meet the following
criteria regarding head motion inside the scanner and behavioral performance. Runs were
excluded if mean framewise head displacement after motion censoring exceeded 0.15 mm,
if the maximum head displacement exceeded 4 mm, or if greater than 50% of frames were
censored during preprocessing. Runs in Datasets 1 and 2 were also excluded if hit rates were
more than 2.5 standard deviations below the mean hit rate value. The tasks used in these data-
sets asked participants to respond to frequent trials (90%), such that good performance would
require presses to the vast majority of trials. Therefore, low hit rates for these tasks indicate
participant noncompliance. Finally, we excluded runs if behavioral performance, quantified
as sensitivity (d 0) in Datasets 1 and 2 and inverse RT variability in Dataset 3, was greater than
2.5 standard deviations below the mean across all runs within a dataset.
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In Dataset 1, two visual runs were removed based on head motion criteria and six visual
runs were excluded for extremely low hit rates. No auditory runs were removed based on any
of the listed criteria. In Dataset 2, 56 participants completed the visual avCPT and 55 partic-
ipants completed the auditory avCPT. Nine visual runs and 10 auditory runs were excluded
based on head motion criteria. An additional two visual runs and one auditory run were
removed due to low hit rates. In the final sample for Dataset 2, 36 participants completed both
a visual and an auditory run. For Dataset 3, 47 visual and 44 auditory runs were successfully
preprocessed. Preprocessing failed for the remaining four visual and seven auditory runs due
to the number of time points censored. No additional runs were removed based on head
motion criteria. No runs in any dataset were excluded on the basis of low sensitivity or RT
variability measures. The final sample sizes for each dataset and run type were as follows:
Dataset 1 included 50 visual and 58 auditory runs, Dataset 2 included 45 visual and 44 audi-
tory runs, and Dataset 3 included 47 visual and 44 auditory runs.

External Validation of Sustained Attention CPM

Functional MRI data were parcellated into 268 functionally defined regions of interest (ROIs;
Shen et al., 2013). Whole-brain functional connectivity matrices, or functional connectomes,
were calculated by correlating the blood oxygen level-dependent (BOLD) time courses for a
given task run between all pairs of ROIs. Edges in this 268-by-268 matrix provide an index of
coactivation similarity between all pairs of regions in the brain for each run.

Our first question of interest was whether a predefined network trained to predict sustained
attention performance in a visual task generalized to the present datasets, which include both
visual and auditory sustained attention tasks. The network tested was defined using CPM (Finn
et al., 2015; Rosenberg et al., 2016; Shen et al., 2017), which identifies a set of edges whose
coactivation strength is related to a performance metric across a set of participants. In CPM,
the strength of every edge in a functional connectivity matrix is correlated with a behavior of
interest, in this case, sustained attention performance. The predefined network, referred to in
the current manuscript as the saCPM (sustained attention CPM), consists of a set of edges
whose strength was either positively (757 edges) or negatively (630 edges) correlated with
visual gradCPT performance across an independent set of participants (N = 25). Significant
edges were defined as those whose network strength was significantly correlated (Pearson’s
r; p < 0.01) with visual gradCPT sensitivity (d 0) across participants. Positively correlated edges
are connections whose strength increased with higher sustained attention performance across
participants, whereas negatively correlated edges are connections whose strength increased
with worse performance. This network is described in previous work by Rosenberg et al.
(2016, 2020) and is shared publicly (https://github.com/monicadrosenberg/Rosenberg
_PNAS2020).

Here, we tested whether strength in this predefined visual network also predicted sustained
attention performance in datasets that include novel participants, multiple perceptual modal-
ities, and new behavioral measures of interest. Network strength is defined as the difference
between mean connectivity in the high-attention network and mean connectivity in the low-
attention network for each run in the current datasets. Because strength in the high-attention
and low-attention networks will be negatively correlated by nature of how the networks were
identified, taking the difference provides a single summary measure that is interpretable.
CPM-predicted behavior is a linear transformation of network strength (predicted behavior =
m × network strength + b, where m and b are learned during model training). Therefore, for
external model validation as we perform in the current set of analyses, the correlation between

Network strength:
A summary statistic of the strength of
functional connections in a set of
edges of interest.

Functional connectome:
A matrix of whole-brain functional
connectivity where each cell
represents the statistical dependence,
often correlation, in the fMRI BOLD
activity between a pair of regions in
the brain.
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network strength and observed behavior is mathematically equivalent to correlation between
predicted and observed behavioral scores. Network strength values were normalized across
participants within dataset for comparison with other analyses. We then tested whether net-
work strength was related to behavioral performance by calculating the partial Spearman’s rho
value between network strength and the behavioral measure of interest for visual and auditory
runs separately, controlling for mean head motion (mean framewise displacement) in the scan-
ner. Spearman’s rho values were used to mitigate any potential effects of outliers on predic-
tions. However, results are consistent when using Pearson’s correlation.

As a note, we do not apply multiple comparison correction for the present study because all
tests of model generalization tested a nonomnibus hypothesis, that is, that network strength in
the trained model will predict sustained attention performance in an independent sample
(García-Pérez, 2023). Each external validation of model prediction tests a single outcome
(significance of correlation between network strength and performance) and therefore multiple
comparisons corrections would create unnecessarily large barriers to generalization.

Modality-Specific Model Construction

Next, we tested whether a network that is trained on fMRI data collected during a sustained
attention task performed in a given perceptual modality better predicts performance on a task
performed in the same versus a different modality. To test this, we defined new models on the
functional connectivity matrices and behavior in Dataset 1 using a CPM approach (Finn et al.,
2015; Rosenberg et al., 2016; Shen et al., 2017). CPM identifies a set of edges that is corre-
lated, either negatively or positively (Pearson’s r, p < 0.01) with behavioral performance across
the training set. For the current analyses, the training set was all visual or auditory runs in
Dataset 1. For each edge in a functional connectome a Pearson’s correlation is calculated
between edge strength and sustained attention performance across the dataset. This is repeated
for all edges in the functional connectivity matrix, and significant edges are those whose cor-
relation with sustained attention is stronger than a given threshold, in this case, p < 0.01.
Positive network edges are those where connectivity strength is positively related to behavior
across an entire training sample, while negative network edges are those whose connectivity
is negatively related to behavior across the sample. Significant edges are isolated to represent
a network of edges for which edge strength is related to sustained attention in a given data-
set. This results in binary edge “masks” consisting of 0 s and 1 s for both positive and neg-
ative networks. Edge masks are used to calculate network strength in independent datasets
by calculating the dot product between the binary mask and each individual’s functional
connectivity matrix and taking the difference between average connectivity strengths in
the positive and negative edge networks. Networks were defined on visual and auditory runs
of Dataset 1 separately. We then tested the generalizability of these networks by calculating
the partial Spearman’s correlation between modality-specific network strength and perfor-
mance in the left-out Datasets 2 and 3 visual and auditory runs, controlling for in-scanner
head motion. For these external validation analyses, the correlation between network
strength and observed behavioral scores is again equivalent to the correlation between pre-
dicted and observed behavioral scores.

To investigate the composition of visual, auditory, and overlapping sustained attention net-
works, we quantified the relative contribution of canonical brain networks (Finn et al., 2015) to
these networks. This functionally defined canonical network parcellation includes visual net-
works labeled based on their similarity to resting-state visual networks. There is no comparable
auditory network included in this parcellation. However, connections from the auditory cortex

External validation:
The application of a model’s feature
weights to an independent set of data
to test out-of-sample predictive
power, with the purpose of
demonstrating robust and accurate
feature identification.

Network edge:
A single functional connection that
reflects the statistical dependence of
activity in a pair of brain regions.
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may be best encompassed by medial frontal and motor networks. We quantified relative con-
tribution to high and low sustained attention networks by calculating the difference between
the number of edges identified by high and low networks within and between canonical net-
works. This relative contribution was normalized by the total number of edges contained in a
network. Significance of network contributions was calculated nonparametrically by shuffling
edges in the high and low attention networks separately and recalculating the difference in
network contribution 1,000 times.

We quantified the significance of overlap between our new visual and auditory sustained
attention networks using a hypergeometric cumulative distribution function, which calculates
the probability of observing the number of overlapping edges given a random sampling with
no replacement of two networks of the sizes observed (Rosenberg et al., 2016). Significance
values were calculated in MATLAB as p = 1-hygcdf(x, M, K, N ) where x is the number of
shared edges between networks of interest, M is the total number of functional edges in the
matrix (35,778), and K and N are the number of functional edges the networks of interest.

We tested whether model generalization was biased toward the perceptual modality of
training by calculating a measure of modality specificity for each external validation dataset.
Modality specificity of visual and auditory networks was calculated as the prediction (partial
Spearman’s rho) of within-modality generalization (e.g., visual performance predicted by the
visual CPM) minus cross-modality generalization (e.g., visual performance predicted by the
auditory CPM) for each dataset and modality. We determined significance with a permutation
test whereby predicted performance values were shuffled and correlated with observed per-
formance, controlling for head motion. Auditory and visual predicted performance values
were shuffled independently, and the difference between these partial Spearman’s rho values
was calculated. This process was repeated across 5,000 iterations to obtain a null distribution
of permuted difference scores.

Finally, we tested the contribution of network components to the generalizability of audi-
tory and visual networks. To do so, we calculated whether network strength in reliably predic-
tive edges, that is, edges that appeared in both visual and auditory predictive networks, was
related to sustained attention performance in independent datasets. We hypothesized that
these edges would reflect connectivity involved in supramodal sustained attention and there-
fore would generalize to predict performance in both modalities. We also tested whether
edges that appeared only in the visual network or the auditory network would show specificity
to their training modality. To do this, we calculated network strength in edges that appeared
either in the visual network or the auditory network, but not in both. We calculated the modal-
ity specificity of visual-only and auditory-only network edges by comparing predictions within
and across modality, as described in the previous paragraph.

All preprocessed data and analysis code required to recreate the described analyses are
publicly available at https://osf.io/bt2xy/.

RESULTS

A Predefined Visual Network Generalizes Across Datasets and Modalities

We first tested whether the saCPM, a network trained to predict performance on a visual sus-
tained attention task generalized to the current datasets. Sustained attention performance,
measured as sensitivity (d 0) in Dataset 1, ranged from 1.14 to 5.11 in visual runs (M = 3.11,
SD = 0.957) and 0.306 to 3.69 in auditory runs (M = 1.51, SD = 0.679). In Dataset 2, visual
d 0 values ranged from 1.08 to 4.40 (M = 3.09, SD = 0.640) and auditory d0 values ranged
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from −0.112 to 2.22 (M = 0.968, SD = 0.599). Inverse RT variability in Dataset 3 ranged
from 3.67 to 10.88 (M = 7.39, SD = 1.76) in visual runs and from 2.76 to 11.47 (M = 5.53,
SD = 1.98) in auditory runs. Mean visual and auditory sustained attention measures were
positively related across subjects in all datasets (Spearman’s rho1 = 0.497, p1 = 9.84 ×
10−3; Spearman’s rho2 = 0.537, p2 < 0.001; Spearman’s rho3 = 0.589, p3 = 0.021). However,
performance was not perfectly correlated across modalities, such that not all variance in
auditory task performance was explained by performance on the visual task. Therefore,
successful generalization of the saCPM would require that it rely on features which capture
shared supramodal variance.

For visual task runs, network strength in the saCPM was positively related to performance in
all datasets (partial rho1 = 0.230, p1 = 0.112; partial rho2 = 0.317, p2 = 0.036; partial rho3 =
0.343, p1 = 0.020), and this relationship was significant in Datasets 2 and 3 (Figure 1). While
the prediction of visual sustained attention was not significant in Dataset 1, the relationship
between network strength and observed performance was in the predicted direction and aligns
with predictions in other datasets. As a validation that the saCPM captures visual sustained
attention performance in Dataset 1, we also tested whether network strength in the saCPM
predicted inverse RT variability in this dataset. RT variability was significantly correlated with
sustained attention performance in visual runs of Dataset 1 (r = 0.649, p < 0.001) but may
capture more meaningful variance in performance in this dataset. saCPM network strength
positively predicted inverse RT variability during the visual task (partial rho = 0.313, p =
0.028). Therefore, we concluded that this previously validated network generalizes to predict
visual sustained attention performance in Dataset 1. When applied to auditory task runs,
saCPM network strength significantly predicted auditory sustained attention performance in
all three datasets (partial rho1 = 0.344, p1 = 8.74 × 10−3; partial rho2 = 0.360, p2 = 0.018; partial
rho3 = 0.552, p1 < 0.001). Successful generalization of the predefined saCPM demonstrates

Figure 1. Network strength in the saCPM network significantly predicted visual sustained attention performance in Datasets 2 and 3 and
auditory sustained attention performance in all datasets.
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that this network captures features of sustained attention that are general across datasets as
well as perceptual modalities.

Sustained Attention Networks Are Not Modality Specific

We next asked whether a model trained on an auditory sustained attention task would gener-
alize to predict performance on other auditory attention tasks better than a model trained on a
visual attention task. One option for doing so would be training a new CPM to predict auditory
task performance, applying the model to new data, comparing its predictive power with that of
the saCPM. However, in this scenario, any differences in predictive power could be due to
differences between training datasets (number of participations, amount and quality of data,
etc.) rather than attention modality per se. Thus, to more directly compare the generalizability
of auditory and visual attention models, we constructed two new models: an auditory model
trained to predict auditory gradCPT performance in Dataset 1 and a visual model trained to
predict visual gradCPT performance in Dataset 1. Dataset 1 was selected as the training dataset
because sustained attention performance in this dataset was measured using the gradCPT.
Thus, networks from this dataset are most comparable with saCPM networks, which were
trained using the same task. We tested the generalizability of these models within and across
perceptual modalities by relating network strength in the visual and auditory networks to
visual and auditory sustained attention performance in Datasets 2 and 3, controlling for head
motion during task runs. For all results reported below, models were applied to functional con-
nectivity data from an auditory or visual task run and resulting predictions were related to
behavioral performance from that same task run.

The visual network generalized to predict visual sustained attention in Dataset 2 (partial
rho = 0.329, p = 0.029) and Dataset 3 (partial rho = 0.305, p = 0.039; Figure 2A). The audi-
tory network similarly generalized to predict auditory sustained attention performance in
both datasets (partial rho2 = 0.376, p2 = 0.013; partial rho3 = 0.537, p3 < 0.001). Within-
modality generalization confirms that CPM successfully identified networks whose strength
predicts out-of-sample sustained attention performance.

We next tested whether these networks predicted sustained attention performance when
tasks were performed in a different modality. The visual network significantly predicted audi-
tory sustained attention performance in both Dataset 2 (partial rho = 0.461, p = 1.84 × 10−3)
and Dataset 3 (partial rho = 0.620, p < 0.001; Figure 2B). The auditory network predicted
visual sustained attention performance in Dataset 2 (partial rho = 0.503, p < 0.001) and
was positively but not significantly related to visual sustained attention performance in
Dataset 3 (partial rho = 0.228, p = 0.127). Successful generalization across dataset and
perceptual modality suggests that sustained attention relies on a modality-general mechanism
captured, at least to some extent, by the edges identified by CPM.

To quantify the extent to which networks were modality specific, we calculated the differ-
ence between within-modality prediction and across-modality prediction by subtracting the
respective partial Spearman’s rho values. We created a null distribution by shuffling model-
predicted visual and auditory behavioral performance values independently. The difference
between partial Spearman’s rho values was permuted and this was repeated 5,000 times. A
one-tailed test was used to determine whether the observed difference between within- and
between-modality predictions was greater than permuted values. Visual performance was not
better predicted by a visual network than an auditory network in Dataset 2 (p = 0.788) or in
Dataset 3 (p = 0.329; Figure 2C). Similarly, auditory performance predictions from the audi-
tory network were not higher than predictions from the visual network in either Dataset 2 (p =
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0.775) or Dataset 3 (p = 0.741). Across both models, we found no modality specificity such
that the networks identified to predict visual or auditory sustained attention performance did
not better predict task performance in the same modality.

We note that the number of runs available in Dataset 1 to train these models differs between
auditory (N = 58) and visual (N = 50) runs. To ensure that training the auditory model on a
larger number of runs did not bias the model’s generalizability, we subsampled the number of
runs used to train the auditory network to be equal to the number of runs used to train the
visual network, that is, 50 runs. We refit 1,000 auditory models using a random subsampling
of 50 auditory runs from Dataset 1 and tested how well these models generalized across data-
sets and modalities. In all cases, prediction from the model trained on the full N = 58 sample
fell within one standard deviation of the mean prediction from models trained on a smaller
sample (Prediction of visual performance: mean partial rho2 = 0.478, SD2 = 0.054; mean par-
tial rho3 = 0.220, SD3 = 0.053; Prediction of auditory performance: mean partial rho2 = 0.365,
SD2 = 0.026; mean partial rho3 = 0.534, SD3 = 0.040). Therefore, it is not the case that pre-
diction from the auditory model in the current analyses is biased due to a larger amount of
training data.

Cross-Modality Generalization Is Not Explained by Within-Modality Performance

Sustained attention performance is reliable across modalities, such that individuals with high
visual sustained attention performance tend to have high auditory sustained attention perfor-
mance. Therefore, cross-modality generalization of network predictions could result simply
because cross-modality performance is related to within-modality performance. Another alter-
native, however, is that network models capture variance above and beyond sustained atten-
tion performance consistency. To test this, we included within-modality sustained attention

Figure 2. (A) Visual and auditory networks generalized to predict visual and auditory sustained attention performance, respectively, in inde-
pendent datasets. Network strength is quantified as the difference between the average high and the average low network strength values. (B)
The visual network predicted auditory sustained attention in independent datasets and the auditory network predicted visual performance in
one dataset. (C) Neither network showed modality specificity, that is, generalized better to within-modality prediction than across-modality
prediction. The vertical black bar represents the true difference between predictions of task performance from a within-modality model versus
an across-modality model. The gray distribution reflects null differences from predictions of shuffled sustained attention performance. Positive
partial rho difference values reflect better prediction within versus across perceptual modality. Negative partial rho difference values reflect
better performance prediction for a task performed in a different perceptual modality than training.
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performance as an additional variable in the partial correlation between cross-modality per-
formance and network strength. If models fail to generalize when supramodal sustained atten-
tion performance is captured by the additional variable of within-modality performance, this
suggests that the generalizability of these models across modalities relies heavily on features
related to this shared supramodal ability. If models still generalize after controlling for supra-
modal sustained attention performance, this would suggest that networks capture unique vari-
ance beyond what can be explained by similarity in sustained attention performance across
runs.

The partial correlation between saCPM network strength and auditory sustained attention
performance remained significant in both Dataset 1 (partial rho = 0.301, p = 0.024) and Data-
set 3 (partial rho = 0.540, p < 0.001), even when controlling for participants’ visual sustained
attention performance. Prediction in Dataset 2 was positive but not significant after controlling
for visual sustained attention performance (partial rho = 0.215, p = 0.183). Therefore, in two of
three datasets, generalization of the saCPM to auditory tasks cannot be explained by a corre-
lation between performance across modalities.

We further tested whether generalization of visual and auditory networks trained on Dataset
1 remained after controlling for within-modality performance. Predictions of auditory sus-
tained attention performance from the visual network remained significant after removing
variance explained by visual sustained attention performance in Dataset 2 (partial rho =
0.339, p = 0.033) and Dataset 3 (partial rho = 0.605, p < 0.001). When controlling for audi-
tory sustained attention performance, predictions of visual sustained attention from auditory
networks were significant in Dataset 2 (partial rho = 0.455, p = 2.81 × 10−3) and remained
nonsignificant in Dataset 3 (partial rho = 0.096, p = 0.532). Therefore, generalization of sus-
tained attention networks across task modalities is not simply due to performance similarity
across modalities, but rather networks capture sustained attention ability beyond what can
be explained by shared supramodal variance.

As a final test of the extent to which cross-modality generalization relies on shared variance
in task performance between modalities, we retrained sustained attention networks to predict
auditory and visual performance in Dataset 1, controlling for performance in the other modal-
ity. In other words, during the feature selection step of visual sustained attention model train-
ing, positive and negative network edges were those that were significantly correlated with
visual sustained attention performance across individuals in Dataset 1 partialing out auditory
sustained attention performance. Similarly, visual sustained attention performance was
included as a partial covariate when identifying auditory sustained attention model features.
Therefore, these models should no longer capture variance that can be explained by consis-
tency in performance across individuals. A failure of these models to generalize across datasets
and modalities would suggest that previous model generalization relied heavily on the shared
variance in sustained attention performance across task modality. However, if these models
indeed predict sustained attention performance in a modality different than training, it suggests
that model features capture relevant variance beyond what can be explained by consistency in
performance across modalities.

Cross-modality predictions of visual sustained attention performance from the retrained
auditory network were significant in Dataset 2 (partial rho = 0.546, p < 0.001) and remained
nonsignificant in Dataset 3 (partial rho = 0.092, p = 0.544). The retrained visual network sig-
nificantly predicted auditory sustained attention performance in both Dataset 2 (partial rho =
0.379, p = 0.012) and Dataset 3 (partial rho = 0.494, p < 0.001). The strength of prediction,
that is, partial rho values, were reduced in three of these cross-modal generalizations,
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suggesting that shared variance at least partially contributed to the generalizability of sustained
attention networks. However, models’ ability to significantly generalize across task modality
after controlling for the shared variance in task performance suggests that these models do not
rely only on this supramodal variance.

Unique Features Underlie Auditory and Visual Networks

Is successful cross-modal prediction a result of shared network edges between visual and audi-
tory networks? If CPM identified a largely overlapping set of edges related to performance on
both visual and auditory tasks, it should follow that predictions would not be modality specific.
However, if auditory and visual networks are independent, generalization across modalities
might suggest that sustained attention performance can be captured by a diverse set of
features.

The visual network consisted of 581 positive (high attention) edges and 659 negative (low
attention) edges. In the auditory network, 626 edges were positively related to auditory sus-
tained attention performance and 970 edges were negatively related to auditory sustained
attention performance. Edgewise contributions to individual networks are grouped into lobe
and canonical network groupings (Finn et al., 2015) and visualized in Figure 3.

Within-network connections in the medial frontal, frontal parietal, and default mode
networks contributed to the visual high-attention network (Figure 3B). Connections
between the motor network and the visual II and visual association networks also contrib-
uted to the high-attention network, as well as connections between the default mode and
medial frontal and subcortical-cerebellar networks. Within-network edges in the motor and
subcortical-cerebellar networks contributed to the visual low-attention network. Connec-
tions between the default mode and frontal parietal and visual association networks were
also stronger in the visual low-attention network, as well as connections between motor
and medial frontal networks.

Connections within the visual association network, as well as connections between the
visual association and frontal parietal, subcortical-cerebellar, and visual II networks were
represented in the auditory high-attention network (Figure 3C). Edges shared between motor
networks and visual I, visual II, and default mode networks were also represented in the
auditory high-attention network. Connections between the subcortical-cerebellar network
and visual I and default mode networks contributed significantly to the auditory high-
attention network, as well as connections between the medial frontal and visual II networks.
Conversely, connections between the visual association network and medial frontal, default
mode, and motor networks were strongly represented in the auditory low-attention network.
Connections between the medial frontal network and frontal parietal and motor networks
were also found more strongly in the auditory low-attention network. Finally, connections
within the subcortical-cerebellar networks and motor networks contributed to the auditory
low-attention network.

Overlap between visual and auditory networks was significant for both high-attention
(25 edges, p < 0.001) and low-attention networks (41 edges; p < 0.001; Figure 3A). Networks
also overlapped with the predefined saCPM. Auditory networks significantly overlapped with
the saCPM, sharing 46 high-attention (p < 0.001) and 68 low-attention edges (p < 0.001). The
visual network also significantly overlapped with the saCPM, sharing 37 high- (p < 0.001)
and 21 low-attention edges (p = 3.52 × 10−3). Network overlap in unexpected directions was
nonsignificant in all cases (all ps > 0.826; Figure 3A).
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Predictions From Nonoverlapping Features Generalize Across Modality

Does removing overlapping edges from visual and auditory networks induce modality speci-
ficity? It is possible that the generalizability of networks across modality is driven by the subset
of shared edges between networks. To ask this, we tested whether edges that were unique to
the auditory or visual network—for example, edges that positively predicted auditory perfor-
mance but did not predict visual performance—generalized in a modality-specific manner.

Predictions of visual sustained attention performance from visual-unique model edges
were significant in Dataset 2 (partial rho = 0.326, p = 0.031) and positive but nonsignificant
in Dataset 3 (partial rho = 0.277, p = 0.063). Edges specific to the visual network remained
generalizable across perceptual modality such that they predicted auditory sustained atten-
tion performance in both Dataset 2 (partial rho = 0.466, p = 1.64 × 10−3) and Dataset 3

Figure 3. (A) Networks constructed using connectome-based predictive modeling identified shared edges relevant for brain-behavior predic-
tions in both high (+)- and low (−)-attention networks. Not all overlap between could be visualized in the Venn diagram but is described fully in
the text. Stars reflect a significant number of overlapping edges between networks, p < 0.01. Contributions to network structure grouped by
lobe and canonical network differed between (B) visual and (C) auditory networks. Matrices visualize the relative contribution of canonical
network edges to high- and low-attention networks. Colors represent the difference between the number of edges in the high- and low-
predictive networks, divided by network size. Stars in the matrix reflect significant contribution to high- or low-attention networks; p <
0.05, uncorrected. Significance was determined by shuffling high- and low-attention networks and recalculating the contribution of edges
to each network 1,000 times.
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(partial rho = 0.582, p < 0.001). We observed no evidence for better prediction for visual
sustained attention from a model trained on a visual sustained attention task, even after
removing modality-general features (p2 = 0.805; p3 = 0.365).

Auditory-unique edges significantly predicted auditory sustained attention performance in
both Dataset 2 (partial rho = 0.371, p = 0.014) and Dataset 3 (partial rho = 0.537, p < 0.001).
For visual performance, the auditory-unique network predictions were significant in Dataset 2
(partial rho = 0.511, p < 0.001) and positive but not significant in Dataset 3 (partial rho =
0.212, p = 0.158). Again, there was no evidence for modality specificity in predictions from
auditory-only network edges (p2 = 0.783; p3 = 0.606). Therefore, predictions from nonover-
lapping edges did not result in modality-specific generalization. Instead, even network edges
unique to a network trained on one modality captured sustained attention ability in another
modality.

Overlapping Features Are Sufficient for Prediction

Within-network edges in the default mode network, as well as edges shared between the
default mode and medial frontal networks contributed to the overlapping high-attention
network (Figure 4A). Additionally, connections shared by the frontal parietal and visual II net-
works, as well as connections shared between the visual association and subcortical-
cerebellar networks were strongly represented in the overlapping high-attention network. This
suggests that stronger connections between these networks are associated with higher
modality-general sustained attention performance. Conversely, within-network edges in the
visual association, subcortical-cerebellar, and motor networks contributed strongly to the
overlapping low attention network. These results suggest that strong within-network connec-
tivity in these networks is associated with worse sustained attention.

We wondered whether the edges shared by both visual and auditory networks defined in
Dataset 1 were sufficient to predict visual and auditory sustained attention performance in
independent datasets. To ask this, we tested whether strength in the edges shared by high
visual and auditory attention networks (25 edges) and low visual and auditory attention net-
works (41 edges) was related to observed behavioral performance. Results are visualized in
Figure 4B–C.

We observed robust prediction from these overlapping edges such that network strength in
this subset of edges significantly predicted visual performance in Dataset 2 (partial rho =
0.492, p < 0.001) and Dataset 3 (partial rho = 0.409, p = 4.78 × 10−3), as well as auditory sus-
tained attention performance in Dataset 2 (partial rho = 0.394, p = 8.99 × 10−3) and Dataset 3
(partial rho = 0.529, p < 0.001). Therefore, while the number of shared network features was
small between visual and auditory networks, these shared features were sufficient for general-
izable prediction of sustained attention performance.

Is prediction from a small set of edges specific to the shared edges between visual and audi-
tory networks? To ask this question, we compared the predictive performance from overlap-
ping edges with predictions from equal-sized subsets of visual or auditory network edges. Five
thousand random subsets were drawn from either the visual or auditory network and network
strength from these subsets was related to observed performance. Distributions of partial rho
values from edge subsets were created for visual and auditory networks separately.

In visual runs, edges that overlapped between the visual and auditory networks outper-
formed visual sustained attention performance prediction from other edge subsets of the same
size drawn from the visual network in Dataset 2 (p = 7.20 × 10−3) but did not significantly
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outperform visual network edge subsets in Dataset 3 (p = 0.056). Predictions for visual sus-
tained attention performance from overlapping edges did not outperform edge subsets drawn
from the auditory network in Dataset 2 (p = 0.171) but overlap predictions did outperform
auditory subset predictions and Dataset 3 (p = 0.024). This suggests that overlapping visual
and auditory predictive edges may carry unique predictive ability related to visual sustained
attention performance. When predicting auditory sustained attention performance, predictions

Figure 4. (A) Edges shared by both auditory and visual models trained on Dataset 1 are visualized by lobe. The matrix depicts relative con-
tribution to high and low overlapping predictive networks, grouped into eight canonical networks. Significance stars on the matrix reflect
greater representation of network edges than chance; p < 0.05, uncorrected. Significance was determined by shuffling network edges
1,000 times and recalculating relative contribution to high- and low-attention networks. Network strength in edges shared by the auditory
and visual networks predicted (B) visual and (C) auditory sustained attention performance in independent datasets. Histograms beneath each
plot depict the extent to which prediction from network strength in the overlapping edges outperforms predictions from equally sized subsets of
edges drawn from either the visual or auditory networks alone (5,000 permutations).
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from overlapping edges were not better than predictions from edge subsets drawn from either
the visual (p2 = 0.230; p3 = 0.081) or the auditory network (p2 = 0.233; p3 = 0.254). Therefore,
reliable edges provided specific predictive boost in visual runs only.

DISCUSSION

Prior predictions from connectome-based models of sustained attention may have been more
limited than previously thought if they were driven by visual task performance specifically.
Here, we tested the extent to which functional networks of sustained attention are modality
specific, with two likely outcomes. First, functional networks or a subset of functional networks
may have predicted sustained attention in a modality-specific manner, generalizing better to
tasks performed in the same perceptual modality as training. Alternatively, functional networks
may not have shown modality specificity and predicted sustained attention performance for
tasks performed in different modalities similarly. Results show evidence for the latter, demon-
strating wide-spread cross-modality generalization even when predictive model features were
largely unique. This suggests that sustained attention performance can be captured by distrib-
uted, supramodal connections in the brain. Further, we demonstrated that both shared and
unique edges in visual and auditory networks predict sustained attention performance across
modality, showing that both reliable (overlapping) and unreliable (unique) model features cap-
ture relevant brain-behavior relationships.

Work investigating brain-behavior relationships emphasizes that testing model generaliz-
ability, in particular, generalizability to external datasets, is the gold standard for the construc-
tion of accurate predictive models (Poldrack et al., 2020; Rosenberg & Finn, 2022; Scheinost
et al., 2019). Connectome-based predictive models have previously demonstrated robust gen-
eralizability to predict relevant cognitive phenotypes across independent samples (Avery et al.,
2020; Fountain-Zaragoza et al., 2019; Gao et al., 2020; Kardan et al., 2022; Rosenberg et al.,
2016, 2018, 2020). Therefore, CPM meets this high benchmark for model validity and holds
promise for identifying robust and interpretable predictors of cognitive variation.

Here, we tested whether CPM-derived functional networks capture variability in sustained
attention performance across participants in three independent datasets. All three datasets
included fMRI tasks that required sustained attention to stimuli presented either in the visual
or auditory domain. However, tasks differed across datasets in several ways, including fre-
quency of responding, selection demands, and inhibitory control. Therefore, successful pre-
diction of performance in these datasets suggests that functional networks successfully capture
a signal of sustained attention which is general across all three task contexts, rather than a
distinct process idiosyncratic to a subset.

We first validated that a network of sustained attention previously defined using a CPM
approach, the saCPM, generalizes to predict sustained attention performance in these datasets.
Previous work has demonstrated that the saCPM captures patterns of connectivity related to
attention by predicting out-of-sample performance on multiple attention tasks (Fountain-
Zaragoza et al., 2019; Kardan et al., 2022; Rosenberg et al., 2018, 2020; Yoo et al., 2022)
as well as attention-deficit/hyperactivity disorder symptomatology (Rosenberg et al., 2016) and
variability in narrative engagement within individuals (Song et al., 2021). A previous study
also found that network strength in the saCPM during rest predicted performance on an audi-
tory sustained attention task (Wu et al., 2020). Our results show that the saCPM generalizes to
predict sustained attention across perceptual modalities from task connectivity, further dem-
onstrating that it captures domain-general signatures of attentional ability. Whereas previous
work speculated that selective generalization of the saCPM to audiovisual movie engagement,
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but not audio-only story engagement, was due to modality specificity of the model (Song et al.,
2021), our results find no modality bias when predicting individual differences in visual and
auditory sustained attention. Rather, the differences in prediction observed in previous work may
instead reflect other differences between stimuli, for example, in the overall engagement with
the narratives.

We further show that models trained on sustained attention tasks performed in separate
visual and auditory modalities generalize to predict sustained attention performance both in
external datasets and when tasks were performed in a different perceptual modality than in
training. This suggests that CPM identifies edges that capture variability in sustained attention
performance that is not specific to the perceptual modality of the task. These results support
previous findings that the ability to sustain attention to visual and auditory information relies to
some extent on shared neural mechanisms (Corriveau et al., 2024; Seli et al., 2012; Terashima
et al., 2021). We used a CPM approach to identify a subset of edges that significantly predicted
both auditory and visual sustained attention performance across individuals in a dataset. This
subset of edges predicted both visual and auditory sustained attention performance in inde-
pendent datasets. Therefore, this overlapping network of edges provides one mechanism that
may support a modality-general ability to sustain attention over time.

Importantly, we show that successful generalization across modalities is not simply a math-
ematical inevitability due to correlations between sustained attention performance across
modalities. While performance was reliable across participants regardless of task modality, gen-
eralization across modality persisted after controlling for performance in the other task modality
during both model training and model testing. Therefore, predictive edges identified by CPM
were able to capture relevant variance in sustained attention beyond consistency in
performance.

Intriguingly, we observed significant prediction both from overlapping visual and auditory
edges as well as modality-specific edges identified using a CPM approach. Therefore, feature
reliability, or the identification of the same model features across training sets, was not neces-
sary for successful generalization. These results highlight a distinction between model feature
reliability and the ability to predict behavioral phenotypes in an external sample. Previous
work has noted this difference, demonstrating that predictive accuracy is not necessarily a
result of reliable features (Kragel et al., 2021; Noble et al., 2017; Tian & Zalesky, 2021,
although see Chen et al., 2023). Researchers have suggested that a lack of reliability may
be a function of the scale at which features are identified, leading to high numbers of model
features (Srivastava et al., 2022; Tian & Zalesky, 2021). Here, model features were identified
from whole-brain patterns of functional connectivity, consisting of >35,000 pairwise connec-
tions between regions. Therefore, it is difficult to determine whether the failure of an edge to
be significantly related to performance in both visual and auditory networks is the result of the
modality specificity of the edges or a result of the relatively small scale at which features were
identified. As a result, edges identified only in one training set may capture modality-general
sustained attention, leading to the significant prediction across modalities observed in the cur-
rent study.

Individual edge contributions to auditory and visual networks from canonical functional
networks varied. We found that connectivity within the default mode network was represented
in the visual high-attention and overlapping high-attention networks but did not significantly
contribute to auditory predictive networks. Much previous work has related relative increases
in default mode network activation with in-the-zone attentional states (Esterman et al., 2013,
2014; Fortenbaugh et al., 2018; Jones et al., 2024; Kucyi et al., 2016, 2017; Song et al., 2023),
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although changes in activity are not functionally equivalent to changes in connectivity. Past
work has shown links between greater within-default mode network connectivity and higher
attention (Gordon et al., 2014; Kucyi & Davis, 2014). Further, attention-related disorders are
characterized by decreased connectivity within the default mode network (Castellanos et al.,
2008; Fair et al., 2010). However, other work has found an inverse or no relationship
(Esterman et al., 2013; Kucyi et al., 2017; Mittner et al., 2014), suggesting associations of
within-network connectivity of the default mode network with sustained attention are com-
plex. The current findings suggest that stronger within-default mode network connections
are associated with higher modality-general sustained attention performance.

We observed a large contribution of within-network edges from the subcortical-cerebellar
and motor networks to visual and auditory low-attention networks, as well as the overlapping
low-attention network. This is in line with previous work which has implicated greater within-
subcortical-cerebellar connectivity in lower sustained attention performance (Fong et al.,
2019; Jones et al., 2024; Rosenberg et al., 2016). Increased within-motor connectivity has sim-
ilarly been related to poor sustained attention in adolescents, whereas connections between
motor and visual regions are increased with better sustained attention (O’Halloran et al.,
2018). We observed a similar pattern of results, with connectivity between motor and visual
II networks contributing to visual and auditory high-attention networks. We do not see a sig-
nificant contribution of motor to visual II connectivity to the overlapping high-attention net-
work, suggesting the individual edges may differ between visual and auditory networks. Since
the gradCPT used to train networks in the current study requires a motor (button press)
response, it is possible that connections within and between the motor network are more
strongly represented in these networks than would be expected if a different sustained atten-
tion task were used for network training. Future work may seek to test the extent to which task
demands influence network architecture.

We should also note a few limitations of the current study. First, our analyses utilized a CPM
approach, which sought to identify connections between brain regions whose strength cap-
tured variability in modality unique or modality general sustained attention. However, it is
likely that functional relationships in the brain, beyond those at the edge level, may differ
between task modality. While outside the scope of the current manuscript, future work may
aim to more fully characterize functional differences between task, for example, at the level of
graph-theoretic differences between whole-brain connectivity patterns. An additional limita-
tion is the precision of the current predicted sustained attention performance values. Signifi-
cant correlations between predicted and observed sustained attention performance suggest
that our sustained attention networks capture reliable differences in performance and are
therefore useful in understanding neural mechanisms involved in sustained attention. How-
ever, the current models leave much variance unexplained, which may result from a number
of individual, task, and dataset differences. Work aimed at precise predictions of sustained
attention performance may choose to include additional variables in predictive models that
better-capture this remaining variability.

While the current analyses focused on the generalization of sustained attention networks, a
similar question could be asked of predictive networks trained on any cognitive process that
can be performed in separate perceptual modalities. For example, it is an open question
whether a network trained to predict visual recognition memory across participants would also
generalize to predict auditory recognition memory, which is reliably worse (Cohen et al.,
2009). Future work testing the validity of brain-based models of cognition should aim to test
model generalizability across perceptual modalities to evaluate the extent to which a cognitive
process is fully captured by a given model.
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Our results demonstrate that functional connectivity-based networks of sustained attention
are not specific to the perceptual modality of training, suggesting that these networks capture
domain- and modality-general aspects of attention. Both nonoverlapping and overlapping,
modality-general edges predicted cross-modal sustained attention performance in indepen-
dent datasets, thereby providing one mechanism by which modality-general sustained atten-
tion ability may be supported. These results highlight that the ability to sustain attention to
information over time relies on distributed, modality-general connections in the brain and
demonstrate the potential for highly generalizable predictive models constructed from func-
tional connectivity features.
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