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Patterns of whole-brain fMRI functional connectivity, or connectomes, are unique to individuals. Previous work has identified subsets
of functional connections within these patterns whose strength predicts aspects of attention and cognition. However, overall features
of these connectomes, such as how stable they are over time and how similar they are to a group-average (typical) or high-performance
(optimal) connectivity pattern, may also reflect cognitive and attentional abilities. Here, we test whether individuals who express
more stable, typical, optimal, and distinctive patterns of functional connectivity perform better on cognitive tasks using data from
three independent samples. We find that individuals with more stable task-based functional connectivity patterns perform better on
attention and working memory tasks, even when controlling for behavioral performance stability. Additionally, we find initial evidence
that individuals with more typical and optimal patterns of functional connectivity also perform better on these tasks. These results
demonstrate that functional connectome stability within individuals and similarity across individuals predicts individual differences
in cognition.
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Introduction
Although essential for daily life, individual abilities vary for cogni-
tive processes such as sustaining attention across time and hold-
ing items in working memory. Identifying brain-based markers
of such abilities has been a goal of much recent work in cogni-
tive neuroscience. Brain-based predictive modeling may provide
insight both into mechanisms broadly underlying cognitive ability
as well as the ways in which individuals meaningfully differ.

Network neuroscience posits that cognitive processes arise
from large-scale interactions between distributed sets of brain
regions, and work characterizing these interactions has found
evidence that they relate to behavior (for a review, see Bassett and
Sporns 2017). In particular, network neuroscientific approaches
have demonstrated that whole-brain fMRI functional connectivity
predicts individual differences in behavioral phenotypes using
methods such as connectome-based predictive modeling (CPM;
Rosenberg et al. 2016; Shen et al. 2017). In CPM, a set of functional
connections between brain regions are identified to serve as
model features for a particular predicted phenotype. This method
has successfully been implemented to predict cognitive processes
and behavioral measures, including sustained attention, fluid
intelligence, processing speed, and working memory (Finn et al.
2015; Rosenberg et al. 2016; Avery et al. 2020; Gao et al. 2020;
Yoo et al. 2022a). The growing list of CPM’s predictive applications
supports functional connectivity’s utility as a predictive tool for a
diverse set of outcome variables.

In addition to these supervised network-based predictive
models, models based on individual- or group-related summary
features of individuals’ whole-brain patterns of functional con-
nectivity, or connectomes, may predict aspects of cognitive and

attentional function. One approach to quantifying connectome
features is characterizing their network properties using graph
theory measures. These network properties, which characterize
interactions between brain regions, have been related to variation
in cognitive abilities such as general intelligence (van den
Heuvel et al. 2009; Hilger et al. 2017) and working memory
(Stanley et al. 2015), providing further support that differences in
structural and functional brain organization underlie behavioral
and cognitive performance. Here, we take a complementary
approach, investigating whether similarities—or differences—
in task-based network patterns within and across individuals
relate to cognitive ability. Specifically, we define features of
the whole-brain connectome that may meaningfully vary
across individuals: connectome similarity to oneself (stability),
connectome similarity to others (typicality and optimality), and
their relationship with each other.

Connectome stability reflects the similarity of one’s own
functional connectivity pattern over time. Despite evidence that
the connectome is stable enough to function as a “fingerprint”
(Miranda-Dominguez et al. 2014; Finn et al. 2015; Gratton
et al. 2018), there is some variability in stability across indi-
viduals which may be useful for prediction. Previously, resting-
state stability, measured as the similarity of an individual’s
connectome or network connectivity across repeated fMRI runs,
was related to cognitive and social function in adolescents and
young adults (Vanderwal et al. 2021; Fu et al. 2022), such that
higher connectome stability was associated with better cognitive
performance and social ability. Furthermore, connectome
stability increases over the course of development but is reduced
for individuals with psychiatric disorders (Kaufmann et al. 2017;
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Vanderwal et al. 2021; Fu et al. 2022). As functional connectivity
patterns dynamically shift to reflect changes in cognitive state in
response to task (Gonzalez-Castillo et al. 2015; Xie et al. 2018), one
possibility is that connectome stability reflects the variability of
an individual’s cognitive states over time, such that more stable
connectivity patterns between repeated resting-state or task runs
may reflect a more on-task cognitive state which results in higher
task performance. Additionally, stability (i.e., similarity) between
resting-state and task connectomes may reflect less task-specific
reconfiguration which has previously been related to cognitive
function (Schultz and Cole 2016). Here, we examine whether
stability across task runs or between task types predicts cognitive
performance.

Connectome typicality measures the similarity of an
individual’s connectome to the average connectome of others
in a group. For the current study, we hypothesized two potential
ways in which connectome typicality might relate to cognitive
performance. First, previous work has shown that activity in large-
scale brain networks (e.g., the frontoparietal network) relates
to attention and working memory performance in children and
young adults (Satterthwaite et al. 2013; Rosenberg et al. 2020).
Therefore, to the extent that a similar task-related pattern of
connectivity is captured in the group-average, the degree to which
an individual resembles others may be indicative of task-related
processing and predictive of performance. Indeed, connectome
typicality during movie watching was predictive of social function
in development (Vanderwal et al. 2021).

This hypothesis about how connectome typicality relates to
performance assumes that the group-average task connectome
captures a meaningful “template” pattern of task-specific
functional connectivity. However, it is also possible that patterns
related to high task performance get lost in the group average.
Instead, perhaps, a better proxy of a task-optimal template
of connectivity is the average connectome of individuals who
perform best on a given task. To investigate this possibility, we
calculated each participant’s connectome “optimality,” which
reflects the similarity of one’s average task connectome to the
average connectome of the highest task performers. A rela-
tionship between task connectome optimality and performance
would suggest that high performers show patterns of connectivity
that are ideal for performing particular cognitive tasks.

Finally, the relationship between connectome stability and
typicality may also predict cognitive performance. Individuals
whose connectomes are more similar to themselves than they
are to others are more easily discriminated from the group, and
this uniqueness could hypothetically reflect an individualized
strategy by which an individual accomplishes a task. Differences
in this discriminability, defined in the current study as the ratio
of one’s similarity to oneself vs. one’s similarity to others, may
also be meaningful for predicting individual phenotypic differ-
ences. Indeed, previous work has found that connectome discrim-
inability increases over development but is delayed in individ-
uals with greater numbers of psychiatric symptoms (Kaufmann
et al. 2017), suggesting that connectome distinctiveness may cap-
ture variance in behavior. Although complementary work has
emphasized the importance of connectome discriminability in
prediction such that better identifiability may improve predictive
power (Amico and Goñi 2018; Elliott et al. 2019), other research has
demonstrated more limited utility of connectome individuation
for phenotype prediction (Finn et al. 2017; Noble et al. 2017;
Greene et al. 2018) and suggested that the functional connections
that contribute to identifiability are distinct from those that best
predict behavior (Mantwill et al. 2021). While the relationship

between discriminability and prediction is an ongoing topic of dis-
cussion, the question of whether greater discriminability relates
to cognitive ability has not been explored. Here, we investigate
this relationship, asking whether discriminability adds unique
predictive power above and beyond its component parts, stability
and typicality.

While previous literature has investigated the connectome’s
predictive utility, existing studies have typically focused on the
strength of sets of functional connections (e.g., CPM, machine
learning approaches) or graph theoretic measures rather than
connectome similarity within and between individuals. The cur-
rent study tests whether overall features of the connectome—
stability, typicality, optimality, and discriminability—predict cog-
nitive performance in adults. In particular, we investigated the
critical cognitive abilities of sustained attention, the ability to
maintain attention over time, and working memory, the capac-
ity to hold information in mind. We identified three datasets
whose task battery included repeated fMRI runs of a sustained
attention and/or working memory task. We then constructed
linear models to determine which connectome features—stability,
typicality, optimality, or discriminability—best predict cognitive
performance across datasets. Finally, we examined whether these
whole-brain features of the connectome offer additional predic-
tive power to previously validated network-based models.

Methods
We tested the extent to which overall features of the functional
connectome, similarity to oneself (connectome stability), similar-
ity to others (connectome typicality and optimality), and the ratio
of stability to typicality (connectome discriminability, or stability
÷ typicality), were related to performance on sustained attention
and working memory tasks (Fig. 1). To evaluate the replicabil-
ity of any effects, we performed analyses on three independent
datasets. In each dataset, participants performed a sustained
attention task during at least two fMRI runs. In two of the three
datasets, participants also performed two runs of a working mem-
ory task. All data were collected with IRB approval and secondary
analysis was approved by the University of Chicago Institutional
Review Board.

Data
Dataset 1. In Dataset 1 (n = 25), described in detail in Rosenberg
et al. 2016, sustained attention was measured by performance on
a gradual-onset continuous performance task (gradCPT; Esterman
et al. 2013). Participants (13 females, ages 18–32 years, mean
age = 22.7 years) performed three gradCPT runs in the same scan
session (13:44 min/run). Two 6-min resting-state runs (one before
and one after the gradCPT runs) were also collected. Task data
are missing or were excluded for excessive head motion from one
gradCPT run for six participants. For these participants, analy-
ses are performed on their two available runs. Additionally, one
resting-state run is missing or excluded for excessive head motion
for two participants.

Each gradCPT run consisted of four 3-min blocks interleaved
with 32-s rest periods. During the task, grayscale images of city
and mountain scenes gradually transitioned from one to the
next over a period of 800 ms. Participants were instructed to
respond with a button press to city scenes (90% of trials) but with-
hold a response to mountains (10%). Sustained attention perfor-
mance was operationalized as sensitivity (d’), calculated as z(hit
rate) − z(false alarm rate), averaged over each participant’s two or
three available runs. Behavioral inclusion criteria were defined a

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/8/5025/6833647 by Serials D

epartm
ent user on 11 N

ovem
ber 2024



Anna Corriveau et al. | 5027

priori as only those participants whose performance was within
2.5 standard deviations from group mean performance. No par-
ticipants were excluded from Dataset 1 based on this criterion.

MRI data were collected on a 3T Siemens Trio TIM system
equipped with a 32-channel head coil. Preprocessing was
performed as described in Rosenberg et al. (2016) using BioImage
Suite. Data were motion corrected using SPM8. Linear and
quadratic drift, mean signal from cerebrospinal fluid, white mat-
ter, and gray matter, and a 24-parameter motion model including
6 motion parameters, 6 temporal derivatives, and their squares
were regressed from the data. Additionally, data were temporally
smoothed with a zero mean unit variance Gaussian filter.

Dataset 2. In Dataset 2 (n = 94), volunteers (61 females, ages
18–36 years, mean age = 23.1 years) participated in two separate
scanning sessions, collected ∼2 weeks apart (mean = 17.2 days,
SD = 20.0 days). Participants were drawn from the dataset
described in Yoo et al. (2022a).

As in Dataset 1, sustained attention was assessed with per-
formance on two runs of the gradCPT task (10 min/run). Unlike
in Dataset 1, gradCPT runs were collected during different days
rather than during the same scan session. Dataset 2 also included
a visual short-term memory task (VSTM; two 10-min runs col-
lected on different days), which measures visual working memory
(Luck and Vogel 1997). In the VSTM, an array of 2, 3, 4, 6, or 8 col-
ored discs was presented on the screen for 100 ms. Following the
presentation and a 900-ms fixation cross, a second array was pre-
sented either with or without a color change, with a color change
occurring on 50% of trials. Participants were given 2,000 ms to
respond with a button press if they detected a color change.
Working memory performance on the VSTM was measured with
Pashler’s K (Pashler 1988). In addition to the gradCPT and VSTM,
participants performed a multiple object tracking task (MOT;
10 min/run), viewed the naturalistic movie Inscapes (Vanderwal
et al. 2015, 2021; 7:16 min/run), and rested (10 min/run).

For sustained attention and working memory analyses
separately, we defined inclusion criteria as only those participants
whose performance was within 2.5 standard deviations from
the group mean performance. No participants were excluded
from Dataset 2 based on this criterion. Additionally, participants
were excluded from stability and discriminability analyses if
they did not complete the first or second sustained attention
or working memory run because connectome stability and
discriminability could not be calculated for these individuals.
This resulted in a sample size n = 65 for sustained attention
and n = 72 for working memory analyses, and 56 participants
were included in stability and discriminability analyses of both
tasks. For analyses of connectome typicality, the full sample size
n = 94 was used. Finally, connectome optimality analyses were
conducted on a sample of n = 89 which corresponded to the
full sample minus the top performers in either the sustained
attention or working memory task, whose connectomes were
averaged as the “optimal” pattern in analyses. If participants
only completed one sustained attention or working memory run,
task-specific functional connectivity was calculated using one
run. Otherwise, functional connectivity matrices were averaged
between sustained attention or working memory runs.

Functional MRI data were collected on a 3T Siemens Prisma
system with a 64-channel head coil. Preprocessing was performed
with AFNI (Cox 1996) and included the removal of the first three
volumes and censoring of volumes with outliers in more than 10%
of voxels and those for which the Euclidean norm of the head
motion parameter derivatives were >0.2 mm. Data were despiked,
slice-time corrected, and motion corrected. Mean signal from the

CSF, white matter, and whole brain was regressed from the data,
as well as 24 motion parameters. Finally, data were aligned to a
high-resolution anatomical image (MPRAGE) and normalized to
MNI space.

Dataset 3. Dataset 3 (n = 316) included data provided by the
large-scale open-source Human Connectome Project S1200
release (HCP; Van Essen et al. 2013; Glasser et al. 2013). All fMRI
data were acquired on a 3T Siemens Skyra scanner. Participants
performed seven tasks (emotion, gambling, language, social,
motor, N-back, and relational) and completed two resting-state
runs over two-day visits. Each condition involved two runs with
opposite phase encoding directions (LR and RL) which were
completed in the same scanning session. Data were minimally
preprocessed using HCP pipelines (Barch et al. 2013; Glasser
et al. 2013). Additionally, the first 15 volumes of each run were
discarded and nuisance covariates were regressed from each
run, including 24 motion-related parameters (6 translational and
rotational motions, 6 derivatives, and their squares), three mean
tissue signals (global, white matter, and cerebrospinal fluid), and
linear and quadratic trends (Yoo et al. 2022b).

Our analyses included data from 316 participants (154 females,
ages 22–36+ years) who completed all nine fMRI conditions with
low head motion in all runs (<3-mm translation, <3◦ rotation,
and <0.15-mm mean frame-to-frame displacement), had a behav-
ioral fluid intelligence score, and were unrelated to any of the
other subjects included in the sample. Fluid intelligence scores
were required for inclusion in separate analysis (Yoo et al. 2022b)
but were not used in the current study. Relatedness was based
on family structure verified with genetic information, and one
subject was randomly selected from each family to be included
in the sample.

Sustained attention performance in the HCP sample was oper-
ationalized as percent accuracy on 0-back blocks of the N-back
task. During 0-back blocks, a target cue was presented at the
start of the block and participants were instructed to respond
with a button press any time the target reappeared. With this
design, the 0-back, or target-detection, task functioned as a type
of continuous performance task (in which participants make one
response to stimuli in a frequent category and another to rare
targets), typically used to measure sustained attention. Working
memory performance was measured with performance on 2-back
runs of the N-back task, during which participants responded with
a button press if an image was the same as the image shown two
trials previously. The N-back task consisted of two 5-min runs with
eight blocks per run. Of these, four blocks were 0-back blocks and
four were 2-back blocks. Both 0-back and 2-back blocks contained
10 trials per block, and a target image was displayed on two trials,
with two–three nontarget lures displayed on other trials. Images
were presented for 2 s with a 500-ms intertrial interval.

As in Datasets 1 and 2, participants were excluded if behavioral
performance was greater than 2.5 standard deviations below
mean performance for sustained attention or working memory
runs. As a result, sustained attention and working memory anal-
yses included 304 and 311 participants, respectively, and 300
participants were included in both analyses.

Functional connectivity calculation
Functional connectivity was calculated in the same way for all
three datasets. For each task run, functional data were parcellated
using the 268-node Shen functional atlas (Shen et al. 2013) and
the time series for all voxels within a parcellation were averaged.
In Dataset 3, because 0-back and 2-back blocks were collected in
the same fMRI run, time series were constructed by concatenating
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Fig. 1. Connectome features were calculated by correlating vectorized task connectomes across runs (stability) or people (typicality and optimality).
Connectome discriminability was calculated as the ratio between fisher-normalized connectome stability and typicality values. The relationship of
these features with task performance was determined using partial Spearman’s rank correlation accounting for in-scanner head motion.

0-back and 2-back blocks separately. A lag of 8 TRs (∼5.76 s;
Lee et al. 1995) was used to adjust for the hemodynamic delay.
Then, the Pearson correlation was calculated between all pairs
of averaged time series and Fisher z-transformed. Each value in
the resulting 268 × 268 matrix, referred to as an “edge,” reflects
the strength of the connection between two brain regions within
an individual. To test whether results depended on parcellation
scheme, we also replicated our main analysis in Dataset 1 using
functional connectivity matrices constructed using the 122-node
Yeo functional atlas (Yeo et al. 2011). These results are included
in Supplementary Table 1.

Measuring features of the connectome
Connectome stability
We assessed the stability of individuals’ functional connectivity
patterns across fMRI runs, controlling for head motion inside the
scanner. Our primary analyses focused on whether within-task
stability—that is, similarity between repeated sustained attention
or working memory runs—was related to performance on the
respective task. As a secondary analysis, we investigated whether
stability within or between unrelated task or resting-state runs
reflected sustained attention and working memory performance.

To calculate connectome stability, we first vectorized connec-
tomes by flattening the lower triangle of the symmetric 268 × 268
whole-brain functional connectivity matrix from each participant
and fMRI run, resulting in a vector of 35,778 edges. Stability of sus-
tained attention task run connectomes was calculated for each
participant as the Pearson correlation between vectorized con-
nectomes (i.e., mean pairwise correlation value for three gradCPT
runs for Dataset 1, two gradCPT runs for Dataset 2, 0-back blocks
from two N-back runs for Dataset 3). Stability of working memory
task run connectomes was calculated for each participant as
the Pearson correlation between vectorized working memory
connectomes (i.e., two VSTM runs for Dataset 2, 2-back blocks
from two N-back runs for Dataset 3). Additionally, overall stability
values were obtained for each participant. These were calculated
as the mean Pearson correlation value between all pairs of
runs for a dataset. Pearson correlation coefficients were Fisher’s

z-transformed before averaging. Pearson correlation was used as
our measure of stability in keeping with previous work (Kaufmann
et al. 2017; Vanderwal et al. 2021) and because we were interested
in relative rather than raw edge strength values which could vary
across sessions and site due to scanner-related and other noise.

We measured the relationship between connectome stability
and task performance by calculating the partial Spearman rank
correlation between all pairs of runs, including terms for aver-
age frame-to-frame head displacement during both runs being
correlated as well as the absolute difference in displacement
between runs. As a note, we used Pearson correlation to calcu-
late relationships between functional connectivity patterns, as
we expected these values to be linearly related to one another.
We used Spearman rank correlation to relate characteristics of
functional connectivity patterns (e.g., stability and typicality) and
to relate these characteristics with performance, as we expected
these variables to be monotonically but not necessarily linearly
related.

To test whether connectome stability was related to overall
task performance and not consistency in task performance, we
conducted an additional control analysis. Again, we calculated
the partial correlation between stability and performance but
included a term controlling for absolute difference in task perfor-
mance between repeated runs of either the sustained attention or
working memory task. As a second control, we calculated the par-
tial Spearman rank correlation between connectome stability and
performance on only one sustained attention or working memory
run—i.e., the first, second, or third run, again controlling for mean
head motion and change in head motion between runs. These
control analyses were conducted on Datasets 1 and 2 because they
required run-specific behavioral data which was unavailable for
Dataset 3.

Connectome typicality
Do better performers show a more typical task-based connec-
tome—i.e., a connectome that is more similar to the group aver-
age? Previous work suggests that cognitive tasks such as the
N-back task elicit characteristic patterns of activation across
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individuals (Satterthwaite et al. 2013; Rosenberg et al. 2020). If
these patterns are reflected in the group average connectome, the
extent to which an individual resembles the group may reflect
task-related processing and therefore performance. Alternatively,
connectome typicality may be indicative of more typical task
performance such that better and worse performers have less
typical patterns of connectivity. To quantify typicality, we first
found an individual’s mean functional connectivity pattern for a
given run type by averaging connectomes across repeated runs
of either sustained attention or working memory tasks. Con-
nectomes were vectorized by extracting the lower triangle of
the matrix. Finally, typicality values were calculated for each
participant by computing the Pearson correlation between their
vectorized connectome and the mean connectome of all other
participants within each dataset. This process was repeated until
every participant served as the left-out participant. This resulted
in two typicality values for each participant: typicality on sus-
tained attention runs and typicality on working memory runs.
We tested whether connectome typicality was related to better
or more typical task performance by calculating the correlation
between connectome typicality values and participants’ overall
task performance scores or their absolute difference in perfor-
mance from the mean.

Connectome optimality
Perhaps taking an average across the group adds noise and does
not reflect a theoretical “optimal” task-specific pattern of con-
nectivity. Instead, similarity to the average connectome of the
top performers—rather than similarity to the group average—
may be a better indicator of task performance. We tested this by
calculating the similarity of each participant’s mean task-specific
connectome (calculated by averaging functional connectomes
over repeated task runs) to the mean connectome of participants
who performed best on either the sustained attention or working
memory tasks. This optimal functional connectivity pattern was
calculated as the average task connectome (from either sustained
attention or working memory runs) of the top 5% of performers in
each task. The resulting “optimal” connectome was drawn from
the top two participants in the Dataset 1 sustained attention
task, and the top five performers in the Dataset 2 sustained
attention and working memory tasks, respectively. In Dataset 3,
46 participants achieved the top behavioral performance score
(100%) on the sustained attention task so the optimal connectome
was calculated as the average across these performers. For the
working memory task in Dataset 3, 19 participants achieved the
top 5% of scores. Connectome optimality values (i.e., similarity
of participants’ mean task-specfic connectome to the optimal
connectome) were not calculated for top performers included
in the optimal connectome. For comparison, optimality analyses
were repeated using the average of performers who achieved
the single highest score and the top 10% of performers as opti-
mality thresholds. Results from these analyses are included in
Supplementary Table 4.

Connectome discriminability
Finally, it might be the case that performance on sustained atten-
tion and working memory tasks is best explained not by the stabil-
ity of an individual’s task-based connectome nor by the similarity
of their connectome to others’, but by a relationship between the
two. For example, previous work has suggested that connectome
distinctiveness, or the extent to which an individual’s connectome
can be identified from the group, is lower in adolescence and
early adulthood for individuals with increased neurological

dysfunction, such as symptoms of attention deficit disorder
and depression and prodromal symptoms of schizophrenia
(Kaufmann et al. 2017).

Here, we were interested in whether differences in connectome
distinctiveness, which we term discriminability, are observed in the
nonclinical adult populations as well and, further, whether they
relate to sustained attention and working memory performance.
To investigate this possibility, we calculated the discriminability
of each participant’s sustained attention and working memory
connectomes, or the similarity of an individual’s connectome
across fMRI runs relative to their similarity to the group within
each dataset. Discriminability was defined as the ratio of an
individual’s connectome stability (similarity to oneself) to their
connectome typicality (similarity to all other participants) for sus-
tained attention and working memory runs separately. Pearson
r values reflecting stability and typicality were Fisher-z trans-
formed before their ratio was taken.

Discriminability is related to subject identifiability or distinc-
tiveness, which have previously been quantified as classification
accuracy (Kaufmann et al. 2017), or whether an individual’s
connectivity most closely resembles oneself across runs (Finn
et al. 2015). While these measures are conceptually related,
each individual’s connectome identifiability is a binary (because
their functional connectivity pattern in one run is either
most similar to their own pattern in another run or not),
whereas their discriminability is continuous. In the datasets
included in the current study, connectome identifiability and
discriminability were significantly related for both sustained
attention (rs = 0.437, P = 2.14∗10−20) and working memory runs
(rs = 0.533, P = 7.80∗10−30). We use discriminability rather than
identifiability here to ask whether an individual’s behavior scales
with their relative within-subject vs. between-subject variation in
functional connectivity patterns.

Modeling behavior across datasets
We evaluated the unique variance in sustained attention and
working memory task performance explained by connectome
features using mixed-effects models. We constructed eight
models to determine which model best predicted performance
across datasets. To control for differences between datasets,
behavioral performance was z-scored within dataset and stability,
typicality, and discriminability values were z-scored across
datasets.

We first constructed four separate models that included a
predictor of stability, typicality, optimality, or discriminability with
a random intercept term for dataset. Additionally, these models
included covariates for mean in-scanner motion and difference in
motion between runs. Next, to examine whether similarity within
and across individuals explain unique variance in performance,
we constructed four additional models. To compare the unique
contributions of stability and typicality, we built a model with
fixed effects of stability and typicality and another model with
effects of stability, typicality, and their interaction. Next, we con-
structed two additional models comparing stability and optimal-
ity—one model with fixed effects of stability and optimality and
a second model with stability, optimality, and their interaction.
Models did not include both typicality and optimality predictors
because these features were highly correlated across participants
(Table 1). Additionally, because discriminability is the ratio of
stability and typicality, we did not include a discriminability term
in these models. However, the interaction term of stability and
typicality may be theoretically related to discriminability. Models
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were constructed using R’s lmer function.

behavior = intercept + β1
∗(stability) + β2

∗(typicality)

+β3
∗ (

mean motion
) + β4

∗ (
motion diff

) + ε

behavior = intercept + β1
∗(stability) + β2

∗(typicality) + β3
∗

(
stability∗typicality

) + β3
∗ (

mean motion
) + β4

∗ (
motion diff

) + ε

behavior = intercept + β1
∗(stability) + β2

∗(optimality)

+β3
∗ (

mean motion
) + β4

∗ (
motion diff

) + ε

behavior = intercept + β1
∗(stability) + β2

∗(optimality) + β3
∗

(
stability∗optimality

) + β3
∗ (

mean motion
) + β4

∗ (
motion diff

) + ε

Contributions of connectome features above and
beyond CPMs
In addition to testing whether connectome stability, typicality,
and optimality independently predict performance on cognitive
tasks, we asked whether they provide additional utility by improv-
ing the predictive power of previously established CPMs. Such
models, which identify functional connections whose strength
scales with behavior and use the strength of these connections
to predict behavior in novel individuals, have been validated for
prediction of both sustained attention (Rosenberg et al. 2016)
and working memory performance (Avery et al. 2020). To test
whether connectome features of stability, typicality, and optimal-
ity improved behavioral prediction over and above that achieved
by CPM network strength alone, we constructed linear models
with terms for CPM network strength, connectome features, and
their interaction for sustained attention and working memory
runs separately.

behavior = intercept + β1
∗ (

CPM network strength
)

+β2
∗ (

connectome feature
)

+β3
∗ (

CPM network strength∗connectome feature
) + ε

CPM network strength was calculated for sustained attention
runs using the sustained attention CPM (Rosenberg et al. 2016;
https://github.com/monicadrosenberg/Rosenberg_PNAS2020) and
for working memory runs using the working memory CPM (Avery
et al. 2020). Specifically, sustained attention network strength
values were computed by taking the difference between the aver-
age functional connection strength in a high-attention network
(whose strength predicts better sustained attention performance)
and a low-attention network (whose strength predicts worse
sustained attention performance), as characterized in Rosenberg
et al. (2016). Working memory strength values were calculated
analogously using the predefined high- and low-working memory
networks (Avery et al. 2020). Network strength and connectome
feature values were z-scored within-dataset for sustained
attention and working memory separately. Because the sustained
attention CPM was originally trained on data from Dataset 1, the
sustained attention models were tested only in Datasets 2 and 3
in the current study. Similarly, because the working memory CPM

was originally trained on data from Dataset 3, the current working
memory models were tested only in Dataset 2. We compared the
output of these models to models including a single term of CPM
network strength or connectome feature.

Anatomy of connectome stability and typicality
To investigate whether the stability and typicality of functional
connectivity differs throughout the brain, we calculated the
stability and typicality of functional connections within and
between canonical functional networks. Network parcellations
were defined in Noble et al. (2017).

We next investigated the degree to which any relationship
between connectome stability and task performance was driven
by individual functional networks. To do so, we “computation-
ally lesioned” networks from the connectome—that is, removed
all nodes within a network from the connectivity matrix—and
recalculated stability values for the lesioned connectome. We
then recalculated the relationship between lesioned connectome
stability and task performance iteratively for each network and
evaluated the change in correlation relative to that observed with
the full connectome.

We used a similar method to determine how individual
functional networks contributed to the relationship between
the typicality of functional connectivity patterns and task
performance. Typicality was calculated after networks were com-
putationally lesioned, and the relationship with task performance
was recalculated using the lesioned connectome. The change
in correlation indicates how each network contributed to the
relationship observed between typicality of the full connectome
and behavior.

Changes in the correlation between computationally lesioned
connectome stability and task performance were compared to a
distribution of 1,000 null permutations. To create the distribu-
tions, network labels were shuffled and the change in correla-
tion between randomly lesioned connectome stability and perfor-
mance was recalculated 1,000 times. Because calculating lesioned
typicality values was more computationally intensive, lesioned
typicality values were compared against 250 null permutations.

Results
Individual and group-level connectome features
are related
Connectome stability, typicality, optimality, and discriminability
are not independent of one another (Table 1). Stability was
correlated with typicality and optimality for both sustained
attention and working memory runs in Datasets 2 and 3 and
correlated with discriminability in all datasets. Typicality and
optimality were also strongly correlated across all datasets in both
sustained attention and working memory runs. Discriminability
was positively correlated with typicality and optimality in
Dataset 3 but negatively correlated with typicality in Dataset
2 working memory runs. Because these connectome variables
are related but not perfectly correlated, they may explain
unique variance in sustained attention and working memory
performance.

Within-task connectome stability uniquely
predicts behavior
We first investigated whether stability of an individual’s
functional connectome during sustained attention and working
memory tasks predicts task performance in three independent
datasets. To do so, we calculated the partial correlation between
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Table 1. Across-subject Spearman’s correlation values between connectome features. Significance values are indicated with asterisks.

Dataset 1
Stability Typicality Optimality

rho sig. rho sig. rho sig.

Typicality Sustained attention 0.2446 0.2376
Optimality Sustained attention 0.4941 0.0166 ∗ 0.4990 0.0154 ∗

Discriminability Sustained attention 0.8477 <0.001 ∗∗∗ −0.2577 0.2128 0.2510 0.2480

Dataset 2
Stability Typicality Optimality

rho sig. rho sig. rho sig.

Typicality Sustained attention 0.2580 0.0380 ∗

Working memory 0.2740 0.0198 ∗

Optimality Sustained attention 0.4818 <0.001 ∗∗∗ 0.8498 <0.001 ∗∗∗

Working memory 0.3304 5.930
∗
10−3 ∗∗ 0.9150 <0.001 ∗∗∗

Discriminability Sustained attention 0.8389 <0.001 ∗∗∗ −0.2264 0.0697 0.1076 0.4052
Working memory 0.8057 <0.001 ∗∗∗ −0.2569 0.0294 ∗ −0.1267 0.3031

Dataset 3
Stability Typicality Optimality

rho sig. rho sig. rho sig.

Typicality Sustained attention 0.7049 <0.001 ∗∗∗

Working memory 0.6743 <0.001 ∗∗∗

Optimality Sustained attention 0.6926 <0.001 ∗∗∗ 0.9853 <0.001 ∗∗∗

Working memory 0.6635 <0.001 ∗∗∗ 0.9871 <0.001 ∗∗∗

Discriminability Sustained attention 0.8735 <0.001 ∗∗∗ 0.3523 <0.001 ∗∗∗ 0.3321 <0.001 ∗∗∗

Working memory 0.9135 <0.001 ∗∗∗ 0.3951 <0.001 ∗∗∗ 0.3945 <0.001 ∗∗∗

∗
P < 0.05.

∗∗
P < 0.01.

∗∗∗
P < 0.001.

connectome stability and task performance controlling for mean
head motion on both runs as well as the difference in mean head
motion between runs (Fig. 2).

Mean connectome stability and sustained attention perfor-
mance were positively correlated in all three datasets, and
significant in Datasets 2 and 3 (DS1: partial rs = 0.344, P = 0.109;
DS2: partial rs = 0.411, P = 8.22∗10−4; DS3: partial rs = 0.168;
P = 3.34∗10−3; Fig. 2; Supplementary Table 2). For Datasets 2 and 3,
which also included working memory tasks, connectome stability
during working memory runs was significantly related to working
memory performance (DS2: partial rs = 0.264, P = 0.027; DS3:
partial rs = 0.207; P = 2.54∗10−4; Fig. 2; Supplementary Table 2).
These results suggest that individuals who express more similar
functional connectivity patterns across repeated fMRI runs of
a sustained attention or working memory task tend to perform
better on these tasks. Additionally, connectome stability during
sustained attention tasks was significantly correlated with
stability during working memory tasks in both datasets that
included these tasks after controlling for mean head motion and
difference in head motion between runs (DS2: partial rs = 0.337,
P = 0.013; DS3 partial rs = 0.693, P = 3.28∗10−46), suggesting that
participants tend to have similar levels of connectome stability
between sustained attention and working memory tasks. Note,
however, that in Dataset 3, sustained attention and working
memory tasks were performed in interleaved blocks, potentially
inflating estimates of connectome stability similarity across
task types.

Perhaps higher performers have more stable functional con-
nectivity patterns regardless of task. We next tested whether it
was stability within sustained attention and working memory

runs specifically or across-run stability more generally that pre-
dicted performance. To do so, we calculated stability between
all pairs of fMRI runs within a dataset and again found the
partial correlation between stability and performance controlling
for head motion (Fig. 3). To control for the increased likelihood
of observing positive but spurious correlations when performing
multiple comparisons, we note here which correlations survive
Bonferroni correction.

Mean stability during resting-state runs was not signifi-
cantly related to sustained attention performance (DS1: partial
rs = 0.260, P = 0.269; DS2: partial rs = 0.150, P = 0.168; DS3: partial
rs = 3.80∗10−3, P = 0.948) nor working memory performance (DS2:
partial rs = −.088, P = 0.422; DS3: partial rs = 0.076, P = 0.185; Fig. 3).
This suggests that the relationship between connectome stability
and performance is relatively specific to task-based functional
connectivity.

Stability between resting-state and task runs was not reliably
related to either sustained attention or working memory
performance across datasets. Average stability in functional
connectivity between rest and sustained attention runs (i.e.,
less change from rest to task runs) predicted sustained attention
performance in Dataset 3 only (DS1: rs = 5.64∗10−4, P = 0.998; DS2:
rs = 0.137, P = 0.197; DS3: rs = 0.115, P = 0.046). Similarly, smaller
changes between rest and working memory runs predicted
working memory performance in Dataset 3 but not Dataset 2
(DS2: rs = −.029., P = 0.787; DS3: rs = 0.118, P = 0.037). While previous
work using data from the Human Connectome Project found
that similarity between resting-state and task FC is related to
task performance (Schultz and Cole 2016), we only observed this
relationship in Dataset 3, a subsample of the Human Connectome
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Fig. 2. A) Connectome stability, b) typicality, c) optimality, d) and discriminability were differentially related sustained attention and working memory
performance across datasets. Spearman’s rank correlations were used to mitigate effects of outliers on the relationship between connectome features
and performance.

Project dataset. We did not observe this relationship consistently
across other datasets.

In some cases, stability during different tasks was predictive
of performance on either the sustained attention or working
memory tasks. Specifically, in Dataset 2, stability during the
MOT task, which taxes attention, predicted both sustained
attention and working memory performance (Sustained atten-
tion: partial rs = 0.297, P = 0.015; Working memory: partial
rs = 0.350, P = 3.67∗10−3; Fig. 3). However, these relationships do not
survive Bonferroni correction for 45 comparisons
((Ntasks

2 − Ntasks)/2). In Dataset 3, connectome stability during 2-
back, motor, language, and social cognition tasks was related
to sustained attention performance (2-back: partial rs = 0.168,
P = 3.37∗10−3; motor: partial rs = 0.116, P = 0.044; language: partial
rs = 0.147, P = 0.011; social: partial rs = 0.141, P = 0.015). Connectome
stability during 0-back, motor, language, and social cognition
tasks similarly predicted working memory performance in
Dataset 3 (0-back: partial rs = 0.219, P = 1.03∗10−4; motor: partial
rs = 0.236, P = 2.82∗10−5; language: partial rs = 0.271, P = 1.38∗10−6;
social: partial rs = 0.227, P = 5.75∗10−5). Only correlations with
working memory performance (0-back, language, social, and
motor tasks) survive Bonferroni correction. Taken together, these

results suggest that the relationship between performance and
stability is specific to stability in certain tasks.

Finally, to examine whether performance was related to stabil-
ity more broadly—that is, across all run types—we correlated
performance with a more general measure of stability for
each participant. To evaluate participants’ overall connec-
tome stability, we calculated the mean stability between
all pairs of runs in each dataset. We then calculated the
partial Spearman rank correlation between stability and per-
formance, controlling for individuals’ mean head motion
on all runs. Overall stability was not related to sustained
attention performance in Dataset 1 or 2 but was marginally
related in Dataset 3 (DS1: partial rs = 0.205, P = 0.336; DS2:
partial rs = 0.167, P = 0.109; DS3: partial rs = 0.106, P = 0.065).
For working memory performance, there was no relationship
observed in Dataset 2, but there was a significant correlation
with overall stability in Dataset 3 (DS2: partial rs = 0.045, P = 0.670;
DS3: partial rs = 0.160, P = 4.70∗10−3). While inconsistent, the
strength of the relationship between performance and overall
stability increased with the total number of runs included in
the calculation of overall stability. Future work can investigate
whether individuals who perform better on sustained attention
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Fig. 3. Stability between pairs of runs differentially predicted a) sustained attention and b) working memory performance. Colors indicate the partial
Spearman correlation between pairwise run stability and performance, controlling for head motion within and between runs. Repeated task runs are
outlined in gray. Repeated task runs whose performance was used as the predicted measure are indicated with heavy black lines. Stars within black and
gray outlines represent uncorrected significant correlation values, while all stars outside of the black and gray outlines represent Bonferroni-corrected
significance values.

and working memory tasks express a more stable pattern of func-
tional connectivity across a variety of cognitive and task states.

Connectome stability predicts behavior beyond
task performance consistency
An alternative explanation of these results is that instead of
reflecting overall performance, connectome stability is related
to consistency in performance, which in turn relates to overall
performance. We performed two control analyses to test this
account. These analyses were not performed in Dataset 3 because
this sample lacked run-specific behavioral measures.

First, we recalculated the partial Spearman rank correlation
between connectome stability and performance controlling for
the absolute difference in performance between runs. Absolute
difference in performance was inversely related to sustained
attention (DS1: r = −0.301, P = 0.144; DS2: r = −0.051; P = 0.688) and
working memory performance (DS2: r = −0.401, P = 4.78∗10−4) indi-
cating that better performers were indeed more consistent (i.e.,
had less change in performance) between runs. After controlling
for consistency in sustained attention performance, the corre-
lation between connectome stability and performance remains
positive in Dataset 1 and significant in Dataset 2 (DS1: par-
tial rs = 0.325, P = 0.140; DS2: partial rs = 0.445, P = 2.96∗10−4). After
controlling for consistency in working memory performance,
the correlation between connectome stability and performance
numerically weakens in Dataset 2 (partial rs = 0.198, P = 0.103).

Second, we calculated the partial Spearman rank correlation
between connectome stability and performance on a single run

from each task. The relationship between connectome stability
and sustained attention task performance was positive for
each of the three runs in Dataset 1 (run 1 partial rs = 0.431,
P = 0.051; run 2 partial rs = 0.467, P = 0.028; run 3 partial rs = 0.120,
P = 0.604) and for both runs in Dataset 2 (run 1 partial rs = 0.231,
P = 0.068; run 2 partial rs = 0.522, P = 1.16∗10−5). For working
memory runs in Dataset 2, the partial correlation between
connectome stability and individual run performance was also
positive, although numerically weaker than the relationship with
average working memory performance (run 1 partial rs = 0.226,
P = 0.060; run 2 partial rs = 0.179, P = 0.139). In combination,
these control analyses suggest that relationships between task-
based connectome stability and sustained attention and working
memory task performance may be partially, but not fully, driven
by the fact that better performers tend to be more consistent
performers.

Connectome typicality also predicts task
performance
It is possible that individuals express patterns of functional con-
nectivity specific to particular cognitive tasks. If this is the case,
we may expect a group-averaged task-based connectome to par-
tially reflect a task-engaged pattern and the extent to which a
participant’s connectome resembles the group average to reflect
the degree to which they achieve this characteristic task pattern.
Thus, it may be that behavioral performance is related to connec-
tome typicality, or how similar an individual is to the rest of the
group.
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To test this possibility, we calculated the typicality of functional
connectivity patterns for each dataset and computed the partial
correlation between connectome typicality and task performance,
again controlling for head motion in the scanner. For sustained
attention runs, connectome typicality was significantly related
to performance in Datasets 1 and 3. In Dataset 2, however,
there was no significant relationship between connectome
typicality and sustained attention performance (DS1: partial
rs = 0.446, P = 0.033; DS2: partial rs = 0.091, P = 0.476; DS3: partial
rs = 0.164, P = 3.34∗10−3; Fig. 2; Supplementary Table 2). In working
memory runs, connectome typicality was not related to working
memory performance in Dataset 2 but was significantly related
to performance in Dataset 3 (DS2: partial rs = 0.168, P = 0.163;
DS3: partial rs = 0.220, P = 2.54∗10−4). Similar to analyses of
connectome stability, the strongest positive relationships between
connectome typicality and task performance are largely specific
to typicality during sustained attention and working memory
tasks (Supplementary Fig. 1), supporting the hypothesis that some
task-specific patterns of behavior are captured in the group-
average connectome.

The inconsistency of the relationship between connectome
typicality and performance, however, suggests that better per-
formers may not simply be expressing a pattern of connectivity
resembling the group average. Alternatively, it may be the case
that a more typical pattern of connectivity is reflective of more
typical performance, in which case better performers would devi-
ate more from the group average. To further investigate these
hypotheses of how functional connectivity typicality relates to
performance, we performed two additional analyses.

First, we tested the possibility that connectome typicality does
not relate to better performance but instead relates to more
typical performance. For this analysis, we measured the relation-
ship between participants’ average task-specific connectome and
their absolute difference from the mean performance score. We
found little evidence for this relationship across datasets for both
sustained attention (DS1: partial rs = −0.153, P = 0.497; DS2: partial
rs = −0.228, P = 0.073; DS3: partial rs = −0.001, P = 0.984) and work-
ing memory tasks (DS2: partial rs = −0.062, P = 0.610; DS3: partial
rs = 0.071, P = 0.210), suggesting that more typical connectomes
are not reliable markers of more typical performance. Further-
more, average connectome typicality values generally increase
across task performance quartiles (Supplementary Fig. 2), indi-
cating that better performers are more similar to the group aver-
age than low performers.

Similarity to the optimal performer predicts
behavior
Another explanation for the inconsistent relationship between
connectome typicality and performance may be that the group-
average connectome is not the best proxy for task-specific
patterns of functional connectivity. Instead, similarity to the
functional connectivity patterns of the best performers may better
reflect adherence to a task-specific connectivity pattern. To test
this possibility, we examined whether similarity to the connec-
tomes of the best performers was predictive of performance. To
do so, we calculated the similarity of each participant’s average
task functional connectivity pattern to the mean connectivity
pattern of the participants who achieved the top 5% of scores.
Then, we calculated the Spearman’s rank correlation between
this similarity to the “optimal” connectome and task performance.
Across all datasets with sustained attention runs, similarity
to the optimal connectome predicted performance during

sustained attention runs (DS1: partial rs = 0.809, P = 9.10∗10−6; DS2:
partial rs = 0.438, P = 4.60∗10−4; DS3: rs = 0.240, P = 1.06∗10−4; Fig. 2;
Supplementary Table 2). For working memory as well, similarity
to the optimal pattern of connectivity was positively correlated
with task performance in both Dataset 2 and 3, and significant
in Dataset 3 (DS2: partial rs = 0.231, P = 0.062; DS3: rs = 0.246,
P = 2.35∗10−5). This consistency across datasets and tasks suggests
that some patterns of connectivity may be “optimal” for
specific tasks, such that the extent to which an individual’s
connectome resembles this optimal pattern reflects performance
on that task.

Do “optimal” patterns of connectivity generalize across task
and dataset? We tested whether similarity to the top performer
connectome of another dataset similarity predicted task perfor-
mance within sustained attention and working memory domains.
We observed limited generalization such that similarity to the
top performers in Dataset 2 significantly predicted gradCPT
performance in Dataset 1 (partial rs = 0.542, P = 7.55∗10−3) but
not 0-back performance in Dataset 3 (partial rs = 0.098, P = 0.088).
Similarity to the mean optimal connectome in Dataset 1 predicted
0-back performance in Dataset 3 (partial rs = 0.183, P = 1.37∗10−3)
and, conversely, similarity to the optimal 0-back connectome in
Dataset 3 predicted gradCPT performance in Dataset 1 (partial
rs = 0.455, P = 0.029). However, gradCPT performance in Dataset
2 was not predicted by similarity to the top connectomes of
either Dataset 1 (partial rs = −0.004, P = 0.972) or Dataset 3 (partial
rs = −0.093, P = 0.470). For working memory tasks, similarity to
the top performers’ connectome in Dataset 2 did not generalize
to predict 2-back performance in Dataset 3 (partial rs = 0.078,
P = 0.171) nor did similarity to the top 2-back connectome predict
VSTM performance in Dataset 2 (partial rs = 0.177, P = 0.143).
Full comparisons are included in Supplementary Table 3. Thus,
“optimal” functional connectivity patterns may be relatively task-
and/or dataset-specific.

Connectome discriminability inconsistently
predicts behavior
Previous work demonstrated increases in connectome distinctive-
ness across development and delays in this trajectory in clin-
ical populations (Kaufmann et al. 2017). These findings raise
the possibility that individuals who perform better on cognitive
and attentional tasks are achieving a more unique connectiv-
ity pattern, such that their connectomes are more similar to
themselves than they are to the group. To investigate this, we
calculated each individual’s discriminability, or the ratio of their
connectome stability to typicality on either sustained attention
or working memory runs. While discriminability values could
theoretically range from negative infinity to positive infinity, in
the current study, values ranged from 0.173 to 3.46. For sustained
attention runs, connectome discriminability was not related to
performance in Dataset 1 but did significantly predict perfor-
mance in Datasets 2 and 3 (DS1: partial rs = 0.109, P = 0.622; DS2:
partial rs = 0.431, P = 4.17∗10−4; DS3: partial rs = 0.124; P = 0.031;
Fig. 2; Supplementary Table 2). In working memory runs, connec-
tome discriminability did not predict performance in Dataset 2
but was significantly related to working memory performance in
Dataset 3 (DS2: partial rs = 0.154, P = 0.203; DS3: partial rs = 0.150;
P = 8.33∗10−3). Although there is some evidence for a relationship
between connectome discriminability and performance, inconsis-
tency across datasets suggests that better performers may not
simply be expressing more unique—i.e., identifiable—patterns
of connectivity.
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Table 2. Output from mixed-effects models including model weights (coefficient) and residual standard error (std error) for
connectome feature predictors. Bolded AIC values indicate the best model for predicting sustained attention and working memory
performance. Significance levels are indicated with asterisks.

Sustained attention Working memory

coefficient std error significance AIC coefficient std error significance AIC

Stability 0.4384 0.1055 1.005
∗
10−4 ∗∗∗ 951.0 0.4054 0.0913 1.590

∗
10−5 ∗∗∗ 1005.2

Typicality 0.2023 0.0562 0.0112 ∗ 952.8 0.1616 0.0587 0.0111 ∗ 1015.2
Optimality 0.3143 0.0524 5.141

∗
10−9 ∗∗∗ 931.6 0.1540 0.0528 7.993

∗
10−3 ∗ ∗ 1013.9

Discriminability 0.0781 0.0518 0.1329 963.6 0.1053 0.0509 0.0394 ∗ 1017.7
Stability 0.3264 0.1192 7.642

∗
10−3 ∗∗ 952.7 0.3572 0.0975 3.035

∗
10−4 ∗∗∗ 1008.5

Typicality 0.1463 0.0772 0.0589 0.1010 0.0669 0.1317
Stability 0.3474 0.1217 5.315

∗
10−3 ∗∗ 958.0 0.3949 0.1028 1.563

∗
10−4 ∗∗ ∗ 1013.3

Typicality 0.1496 0.0775 0.0543 0.0876 0.0683 0.2002
Stability

∗
Typicality 0.0384 0.0632 0.5442 0.0597 0.0579 0.3034

Stability 0.1165 0.0927 0.2899 936.8 0.3529 0.0958 2.887
∗
10−4 ∗ ∗∗ 1007.6

Optimality 0.2914 0.0616 4.750
∗
10−6 ∗∗∗ 0.1099 0.0596 0.0661

Stability 0.2182 0.1131 0.0704 939.3 0.3818 0.1026 2.643
∗
10−4 ∗∗∗ 1013.0

Optimality 0.2713 0.0630 2.409
∗
10−5 ∗ ∗∗ 0.0985 0.0621 0.1134

Stability
∗

Optimality 0.1042 0.0514 0.0434 ∗ 0.0399 0.0582 0.4931

∗
P < 0.05.

∗∗
P < 0.01.

∗∗∗
P < 0.001.

Models based on connectome stability and
optimality best predict behavior
We constructed four linear models, each containing one feature
of the connectome (i.e., stability, typicality, optimality, and dis-
criminability) to evaluate how each feature explained variation
in sustained attention and working memory performance sep-
arately. Model output is summarized in Table 2. To determine
which of our candidate models best explained variations in both
sustained attention and working memory performance, we com-
pared the Akaike Information Criteria (AIC) values of each model.
AIC values quantify to what extent a model minimizes both
bias and variance, such that lower AIC values indicate a more
optimal minimization (Burnham and Anderson 2004). AIC values
are unitless but enable the comparison of models fitting the
same data to determine which candidate model least overfits
the data. Using these criteria for models explaining sustained
attention performance, we observed the lowest AIC value for
the model containing only a fixed effect for optimality. A model
containing only a stability or typicality term also significantly
captured variability in sustained attention performance. When
predicting working memory performance, we observed the lowest
AIC value for the stability model, suggesting that this is the best-
fit model for predicting working memory performance. However,
typicality, optimality, and discriminability models explained sig-
nificant variability in working memory performance.

We were further interested in whether interactions between
variables explained additional variance in performance. To deter-
mine whether similarity within and between individuals capture
unique variability in performance, we constructed four additional
models. Two models included terms for stability and typicality
and stability, typicality, and their interaction. An additional two
models compared stability and optimality, and stability, optimal-
ity, plus their interaction. Importantly, discriminability was not
included in these models because it was derived from stability and
typicality variables and typicality and optimality were not include
in the same model to avoid multicollinearity. Results indicated
that, for sustained attention runs, a model with fixed effects
for stability and optimality best predicted sustained attention
performance of these additional models. However, only the fixed
effect of optimality was a significant predictor in this model. Sim-
ilarly, for working memory runs, a model with effects of stability

and optimality best predicted working memory performance of
these models. However, only stability was a significant predictor
in this model. These results suggest that a model considering
connectome similarity within (stability) and across (optimality)
participants may be the most useful predictor of cognitive
performance.

Connectome features are generalizable
predictors
Do connectome features capture unique variance in behavioral
prediction when used in combination with previously validated
network models of sustained attention and working memory? We
constructed linear models with terms for CPM network strength,
stability, typicality, and their interactions to predict sustained
attention and working memory performance separately. Average
and mean difference in in-scanner motion between runs were
also included as covariates in all models. CPM network strength
was calculated using the previously published sustained attention
CPM (Rosenberg et al. 2016) for sustained attention runs and
previously published working memory CPM (Avery et al. 2020) for
working memory runs. Model results are summarized in supple-
mentary materials (Supplementary Table 5).

CPM network strength alone was the best predictor of sus-
tained attention performance, as measured by the gradCPT in
Dataset 2. Models with a single term of connectome stability or
optimality predicted gradCPT performance in this dataset but
were less optimal models based on AIC values. In Dataset 3,
connectome feature models predicted 0-back performance better
than sustained attention CPM strength. Sustained attention CPM
strength alone did not significantly predict 0-back performance
in the present study. However, recently published work found that
sustained attention CPM strength did significantly predict 0-back
performance in a larger HCP sample (Kardan et al. 2022). Differ-
ences in how data were preprocessed as well as fewer participants
(n = 316 vs. n = 754) and higher and less variable behavioral scores
in the current sample may have contributed to differences in
model prediction between datasets. Instead, the best model for
predicting 0-back performance in Dataset 3 was the model that
included terms for sustained attention CPM strength, optimality,
and their interactions. However, the only terms that significantly
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Fig. 4. Stability and typicality of within- and between-network connections for a) sustained attention and b) working memory task connectomes. Matrices
on the left represent average Pearson’s correlations across datasets, while matrices on the right are average correlations normalized by network size.

predicted performance in this model were connectome optimality
and the interaction between CPM strength and optimality.

In working memory runs in Dataset 2, a model including
working memory CPM strength, connectome stability, and their
interaction was the best predictor of VSTM working memory per-
formance. However, only the connectome stability and interaction
terms had significant beta coefficients in this model. In combina-
tion, these results suggest that connectome features of stability
and optimality may be reliable predictors of sustained attention
and working memory performance in datasets where supervised
CPM models do not generalize. Furthermore, in datasets where
pretrained models do not generalize on their own, incorporating
connectome stability or optimality as model predictors may
improve model performance.

Individual network contributions to behavioral
prediction vary
We were interested in exploring whether the relationship between
connectome stability and cognitive performance relies on whole-
brain stability, or whether certain networks contribute to this
relationship more than others. First, we tested whether stability in
CPM networks, a subset of the connectome edges whose strength
predicts sustained attention or working memory performance,
also predicts performance. Stability in the sustained attention
CPM network was not significantly related to sustained attention
performance in any of our three datasets (DS1: rs = 0.256, P = 0.238;
DS2: rs = 0.083, P = 0.518; DS3: rs = 0.058, P = 0.315). Working
memory CPM network stability predicted 2-back performance in
Dataset 3 but not VSTM performance in Dataset 2 (DS2: rs = 0.218,
P = 0.070; DS3: rs = 0.383, P = 2.94∗10−12). These results suggest that
stability of the whole-brain connectome may be more predictive
than stability in CPM networks.

Are certain functional networks more stable or typical than
others? We visualized within- and between-network connections
in terms of their average stability and typicality (Fig. 4) across
individuals within a dataset. Stability and typicality values were
normalized based on network size. This visualization revealed
high consistency in both network stability and typicality values

for both sustained attention and working memory task connec-
tivity patterns. In particular, visual networks were both highly
stable and highly typical in both tasks across datasets. Matrices
visualizing within- and between-network connections for addi-
tional connectome features optimality and discriminability, as
well as network connections for individual datasets, are included
in the supplement (Supplementary Figs 3 and 4).

Next, we computationally lesioned all nodes belonging to
each of 10 canonical networks and recalculated the correlation
between stability in the remaining nodes and either sustained
attention or working memory performance. The change between
intact and lesioned correlation values is plotted in Fig. 5.

Networks inconsistently contributed to the relationship
between stability and cognitive performance. No network
significantly contributed to the correlation between stability
and sustained attention performance across all datasets. The
visual I network significantly added noise to this correlation
in Datasets 1 and 2 which both measured sustained attention
performance using the gradCPT task. The visual association
network significantly contributed to the correlation between
stability and sustained attention performance in Datasets 1
and 2 but displayed a contradictory pattern of results for
working memory, contributing to the relationship between
stability and working memory performance in Dataset 2 but
adding significant noise in Dataset 3. These results suggest that
the relationship between connectome stability and sustained
attention and working memory performance does not rely
on specific contributions from individual networks. Instead,
networks appear to contribute in a pattern that is more task-
specific rather than cognitive process-specific.

We were similarly interested in whether the relationship
between connectome typicality and cognitive performance relies
on particular networks. We again computationally lesioned 10
canonical networks and recalculated the relationship between
typicality in the intact networks and either sustained attention
or working memory performance for each dataset. The change
in correlation between intact and lesioned connectome typicality
and cognitive performance is shown in Fig. 6.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/8/5025/6833647 by Serials D

epartm
ent user on 11 N

ovem
ber 2024

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac396#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac396#supplementary-data


Anna Corriveau et al. | 5037

Fig. 5. Canonical networks differentially contribute to the correlation between connectome stability and cognitive performance. Dashed lines indicate
correlation values between intact connectome stability and performance. Heavy red lines indicate the Spearman rank correlation between lesioned
connectomes and a) sustained attention and b) working memory performance. Decreased lesioned correlations indicate that the network contributed
to the relationship between connectome stability and performance, while increased lesioned correlations suggest that the network added noise.
Significance P < 0.05 (uncorrected) is indicated with asterisks.

Fig. 6. Canonical networks differentially contribute to the correlation between connectome typicality and cognitive performance. Dashed lines indicate
correlation values between intact connectome typicality and performance. Heavy blue lines indicate the Spearman rank correlation between lesioned
connectomes and a) sustained attention and b) working memory performance. Decreased lesioned correlations indicate that the network contributed
to the relationship between connectome typicality and performance, while increased lesioned correlations suggest that the network added noise.
Significance P < 0.05 (uncorrected) is indicated with asterisks.

Network contribution to the correlation between typicality and
cognitive performance largely differed across datasets. However,
we observed significant contribution of the frontoparietal
network to the relationship between connectome typicality
and performance in working memory runs in both Dataset 2
and Dataset 3. This result is in accordance with previous work
that found frontoparietal activity to be a biomarker of working
memory performance in preadolescents (Rosenberg et al. 2020).
The medial frontal network significantly contributed to the rela-
tionship between connectome typicality and sustained attention
performance in Datasets 1 and 2 but interestingly added
significant noise to this relationship in Dataset 3. Again, it is
possible that network contribution to the relationship between

connectome typicality and cognitive performance is specific to
the task being used to measure a given cognitive ability.

Discussion
The current study investigated whether features of the functional
connectome predict individual phenotypes. Connectome stability,
or similarity in functional connectivity patterns across runs, may
reflect a more consistent on-task state and has been related to
phenotypes in development (Kaufmann et al. 2017; Vanderwal
et al. 2021; Fu et al. 2022). More typical connectomes may reflect
a characteristic task-specific functional connectivity pattern
that is captured in the group-average. Alternatively, this optimal
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pattern of connectivity may be best captured in the mean connec-
tome of the highest task performers. Finally, the ratio of stability to
typicality (discriminability) reflects a connectome’s uniqueness
and has been related to clinical symptoms in development
(Kaufmann et al. 2017). We compared the predictive ability of
these features for sustained attention across three independent
datasets and working memory across two datasets. Our findings
suggest that connectome features, particularly connectome
stability and optimality, can serve as generalizable predictors
of sustained attention and working memory abilities.

Connectome stability was a consistent predictor of both sus-
tained attention and working memory performance. This relation-
ship was relatively specific to within-task (i.e., sustained attention
or working memory) stability, such that the strongest relation-
ships between connectome stability and task were observed when
stability was calculated between repeated sustained attention or
working memory runs. This relationship was observed across all
datasets in the current study, with stability during attention tasks
positively correlated with attentional performance and stability
during working memory tasks positively correlated with working
memory performance. Better performers in both tasks expressed
more similar functional connectivity patterns across scans, even
when scans were separated by weeks as in Dataset 2. Stability dur-
ing different tasks (e.g., an MOT task in Dataset 2; language, social,
and motor tasks in Dataset 3) was also at times related to task
performance. We hypothesize that connectome stability reflects
the extent to which an individual’s cognitive state changes over
time, with greater stability indicating a more similar cognitive
state between fMRI runs. Therefore, connectome stability may
indicate a more on-task state which may also be reflected in task
performance.

Our feature of connectome stability is related to test–retest
reliability of the functional connectome across scan sessions
(Noble et al. 2019). However, while test–retest reliability tests the
extent to which functional connectivity as a measure remains
stable over time, here, we aim to leverage meaningful differences
in test–retest reliability across individuals to tell us something
about cognitive ability. Future studies of reliability may consider
to what extent a lack of test–retest reliability reflects method-
ological noise versus meaningful variability across tasks and
individuals.

Notably, we found a lack of predictive ability from connectome
stability during rest and between task and rest runs. The latter
observation is in contrast to previous work that found that
more similar rest and task connectivity patterns was related to
higher cognition, including better working memory performance
(Schultz and Cole 2016). The current results also demonstrate
a benefit of utilizing task-based functional connectivity data
as a predictive tool, rather than resting-state which has been
used widely in the field. For the current study, we consider what
features of the functional connectomes themselves contribute
to tasks’ predictive ability. One possibility is that the variability
of connectivity patterns during specific tasks boosts within-
individual similarity’s predictive power. However, a visualization
of connectome standard deviation across participants suggests
that tasks whose stability predicted performance and those that
do not are similarly variable (Supplementary Fig. 5). Another
possibility is that predictive tasks induce a more variable func-
tional connectivity pattern within-individuals than other tasks,
thereby allowing stability to be a more reliable measure. However,
a comparison of mean task functional connectivity standard
deviation does not support this hypothesis (Supplementary Fig. 6).
Finally, scan length may affect the overall stability values,

which may in turn affect behavior prediction. However, while
stability between task runs was higher for longer tasks across
datasets (correlation between number of TRs and task stability:
r = 0.675, P = 4.04∗10−4), overall task stability did not reliably
lead to better prediction of sustained attention (relationship
between task stability and stability-behavior correlation: r = 0.236,
P = 0.278) nor working memory (r = −0.304, P = 0.158) performance
(Supplementary Table 6). Therefore, while longer scans may lead
to more stable patterns of connectivity, more stable run types
are not always most predictive of behavior. Future work may
seek to further investigate task-based connectivity’s predictive
advantage. However, the current results add to the growing
literature emphasizing the benefit of task-specific over resting
state functional connectivity as a predictive tool.

We found initial—albeit less consistent—evidence that connec-
tome typicality, or the extent to which an individual resembles the
rest of the group, predicts cognitive and attentional performance.
Tasks have been shown to induce characteristic changes in the
connectome (Shine et al. 2016; Lynch et al. 2018; Greene et al.
2020), and children and adults who show activity in canonical
task-positive regions, such as regions of the frontoparietal net-
work, perform better on attention and working memory tasks
(Rypma et al. 2002;Satterthwaite et al. 2013 ; Rosenberg et al. 2020).
Thus, we hypothesized that if this task-relevant connectivity is
reflected in the group-average connectome, the extent to which
an individual resembles the group may scale with their task
engagement and performance. In the present datasets, connec-
tome typicality was related to sustained attention performance
in two of three datasets and working memory performance in
one of two datasets. A linear model with a single fixed effect
of typicality significantly predicted both sustained attention and
working memory across datasets. These results suggests that
individuals who express shared, task-specific connectivity pat-
terns may indeed show more on-task cognitive performance as
evidenced by higher behavioral scores.

Following these initial inconsistent results, we further explored
how connectome typicality might relate to behavior. We did not
find evidence that connectome typicality is related to typical-
ity in performance. Instead, we found that, for both sustained
attention and working memory tasks, connectome optimality—or,
similarity to the connectome of the highest performer on a given
task—was positively correlated with task performance across all
datasets. In combination with the previous analysis, these results
support the notion of optimal task-specific connectivity patterns
but suggest that these patterns may become obscured when
averaged across participants. We also observed limited general-
izability of connectome optimality, such that the similarity to the
optimal sustained attention or working memory connectome in
one dataset did not reliably predict sustained attention or working
memory performance in other datasets, respectively. Future stud-
ies may seek to further characterize these “optimal” patterns of
connectivity and explore the extent of their generalizability across
contexts and tasks.

Finally, we tested the predictive utility of connectome discrim-
inability, or an individual’s ability to be distinguished from others.
To do so, we defined connectome discriminability as the extent
to which an individual looks more like themselves than others
or, intuitively, the ratio of connectome stability and typicality.
This measure is related but not identical to previous work that
has characterized connectome identifiability using fingerprinting
techniques which identify individuals who are more like
themelves than any other individual across runs (Finn et al.
2015). Although both measures capture related measurements,
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connectome fingerprinting binarizes identifiability (i.e., an
individual is either most like themselves or not), while con-
nectome discriminability values are continuous. In addition
to task-relevant changes, in-scanner tasks amplify individual
differences in functional connectivity patterns allowing for
improved identification of individuals—i.e., better connectome
fingerprinting (Finn et al. 2015; Rosenberg et al. 2016; Greene
et al. 2020) and, in some cases, improved behavioral predictions
(Finn et al. 2017; Greene et al. 2020, but see Finn and Rosenberg
2021, Mantwill et al. 2021, and Noble et al. 2017). One possibility
is that individuals who show stable, unique connectivity profiles
during task performance may be reliably engaging individualized
networks supporting task performance and thus may show better
task performance. Thus, we tested whether connectome dis-
criminability predicts sustained attention and working memory
performance. We observed an inconsistent relationship between
discriminability and performance across datasets and tasks. Fixed
effects models predicting both sustained attention and working
memory were significant but less optimal than other models
tested. These results suggest that connectome discriminability
may not be a reliable predictor of cognitive performance, at
least in the case of sustained attention and working memory.
Furthermore, discriminability as defined in the current study as
the ratio between one’s stability and typicality did not add unique
predictive power above and beyond these component measures.

Stability and typicality of individual network connections was
consistent across datasets and tasks. While no network reli-
ably related to connectome stability’s prediction of performance
across datasets, computational lesioning of the frontoparietal
network significantly impacted the relationship between typical-
ity and working memory performance in both datasets with a
working memory measure. These results are in line with previous
work that identified frontoparietal activity as a biomarker of
working memory performance in preadolescents (Rosenberg et al.
2020). Inconsistent contributions from other canonical networks,
in combination with limited behavioral prediction from stability
within previously validated network-based models, suggest that
connections involved in connectome stability and typicality’s pre-
diction of both sustained attention and working memory perfor-
mance are broadly distributed. One possibility is that the canon-
ical networks used here are too large-scale to identify reliable
anatomical regions meaningful for prediction. Additionally, future
studies may investigate whether the stability and typicality of
functional connections relate to performance in a manner spe-
cific to the unique task being performed. Perhaps specific task
demands influence which networks’ stability most contribute to
performance prediction.

In the current study, we observed utility of including individual-
and group-related functional connectivity features in behavioral
prediction models. In particular, connectome stability and opti-
mality were able to predict sustained attention and working
memory performance in datasets where network-based strength
models did not generalize. Functional connectivity features have
the additional benefit of being inherent to the connectome, such
that models incorporating these features do not require sepa-
rate training and testing sets. This suggests that unsupervised
models based on functional connectivity features may capture
unique variance in cognitive performance more broadly and may
be valuable to include in future predictive models, particularly
in cases when supervised CPMs do not generalize. The specific
utility of connectome features for prediction may depend on
task and dataset. While we observed significant prediction of
both sustained attention and working memory using features of

connectome typicality and optimality, these features are dataset-
dependent such that they require meaningful patterns of connec-
tivity to be captured in the average connectomes of the group and
top performers. Alternatively, connectome stability is relatively
agnostic to characteristics of the larger dataset and may therefore
be a useful predictor in more idiosyncratic datasets.

Limitations
As is the case in many studies relating task-based functional
connectivity to behavior, it is possible that our results are influ-
enced by in-scanner task performance. For example, behavior
such as motion (e.g., task-related button presses or head motion)
may have systematically varied with our measures of sustained
attention and working memory performance. If this were the
case, our neural measures may not be solely markers of these
cognitive mechanisms but instead reflect some behavioral covari-
ates. While the results of our behavioral stability control analysis
suggest that stability in in-scanner performance does not fully
explain our findings, we cannot rule out the possibility that our
results are influenced by other, systematically varying behaviors.

Although the replication of effects across datasets that mea-
sured sustained attention and working memory with different
tasks is a strength of the current study, that differences between
tasks may have limited our findings. For example, while the 0-
back task used as a measure of sustained attention in Dataset
3 resembles a target detection task, commonly used in previous
literature, it likely differs in many ways from a continuous perfor-
mance task such as the gradCPT used in Datasets 1 and 2. Simi-
larly, the working memory tasks used—the VSTM in Dataset 2 and
2-back task in Dataset 3—likely involve different processes despite
being used to measure the same cognitive ability. Future work may
seek to investigate task-specific influences on the relationship
between functional connectivity features and performance to
account for these differences.

Conclusion
Here, we demonstrate the utility of functional connectome
features as predictors of cognitive ability in adults. Of the
features tested, connectome stability and optimality consistently
predicted both sustained attention and working memory across
three independent datasets. Stability during sustained attention
and working memory tasks was related to performance on
the respective task, suggesting that better performers display
more similar task-specific functional connectivity patterns over
time. Additionally, connectome optimality, or similarity to high
performers’ task connectome predicted performance across
datasets, indicating the potential for task-specific “template”
patterns of connectivity. Finally, both connectome stability and
optimality explained unique variance in task performance when
generalizing network-based connectivity models to novel tasks.
Altogether, the current study provides evidence for the utility
of connectome features that summarize similarity within and
across individuals as brain-based markers of cognition.
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Supplementary material is available at Cerebral Cortex online.
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