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Article summary 
The ability to maintain focus and remember information varies drastically from one moment to 
the next. Variability in attentional and mnemonic processes is driven both by external factors 
and also by internal neural states. While a growing body of work in cognitive neuroscience 
characterizes such fluctuations, many studies do not consider these dynamics. Behavioral and 
neural measures that track ongoing attention and memory fluctuations and predict upcoming 
failures demonstrate that these processes vary across multiple time scales—at times in tandem 
while at other times out of sync. Patterns of synchronous fluctuations reveal that sustained 
attention fluctuations, in particular, impact working memory capacity—but not precision—as well 
as long-term memory encoding and retrieval success. Beyond measuring attentional and 
memory processes over time, perturbing them through closed-loop feedback can reveal insights 
about these processes individually as well as interactions between them.  
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1. Introduction 
 
Attention and memory support nearly every aspect of daily life, from cooking breakfast to 

commuting to work to relaxing with a book. We remember, for example, the ingredients in a 

recipe, the quickest route, and the key characters. We engage attention to monitor the pot on 

the stove, avoid hazards on the road, and notice central events in the story. These mental 

processes, which shape how we experience and navigate the world, have become two of the 

most studied topics in cognitive neuroscience. Despite the proliferation of attention and memory 

research, however, the importance of their dynamics has been underappreciated. That is, we do 

not attend, encode, and retrieve equally well over time. Rather, our degree of focus and 

likelihood of storing, maintaining, and retrieving a memory varies from one moment to the next. 

We argue that not only does characterizing these moment-to-moment fluctuations reveal 

valuable insights about attention, memory, and their interactions, but that it is inadequate to 

understand attention and memory without also considering how they vary over time.   

 

Accumulating evidence suggests that attention and memory processes fluctuate in tandem 

(Figure 1). These synchronous dynamics are evident in daily life. While reading a book, for 

example, attention lapses can interfere with our ability to remember details from a paragraph 

read just moments ago. On the flip side, recalling a significant argument between two 

characters may drive attentional engagement when they meet again. Indeed, attention covaries 

with working memory (deBettencourt et al., 2019), long-term memory encoding (deBettencourt 

et al., 2018), and long-term memory retrieval (Madore & Wagner, 2022). Characterizing the 

synchrony between attention and memory dynamics can thus reveal crucial links between these 

processes. 

 

https://www.zotero.org/google-docs/?7qaTOO


 

At the same time, there are also aspects of attention and memory that vary out of sync. While 

attentional fluctuations substantially impact which items are later recognized (deBettencourt et 

al., 2018), they appear to be distinct from item memorability (Roberts & Pruin et al., 2025; 

Wakeland-Hart et al., 2022). Moreover, attention consists of multiple subcomponents, including 

sustained attention and selective attention, which may interact differentially with memory 

(Corriveau, Chao et al. 2025; Corriveau et al., 2024; deBettencourt et al., 2021; Mirjalili & Duarte 

2025). Further, while attention performance progressively declines over long periods of watch 

(Mackworth et al., 1948), working memory capacity does not show comparable monotonic 

decrements over time (Adam et al., 2015; Hakim et al., 2020). As in these examples, identifying 

moments when attention and memory dynamics decouple can clarify the nature of their 

relationships. 

 

The interactions between attention and memory are complex and multidirectional. Neither 

attention nor memory is a unitary construct and their constituent processes may interact in 

different ways at different times. Fluctuations in one attentional process may influence one type 

of memory but not another. Memory may guide attention in one situation but not another. 

Attention may impact memory encoding and retrieval which in turn may affect how attention is 

deployed in the future. One means of better untangling this web of interactions is identifying 

when attention and memory dynamics are shared and when they diverge. Moreover, monitoring 

dynamics in real time presents powerful opportunities for neuroadaptive designs, including 

closed-loop neurofeedback and real-time triggering, that can reveal causal associations by 

tracing and manipulating attention and memory. A fuller characterization of dynamics informs 

our understanding of attention and memory individually as well as when and how they interact in 

the human mind and brain.  

 



 

 
 

Figure 1. Attention and memory each dynamically fluctuate over time. Measuring these 

processes concurrently reveals that these fluctuations often occur in tandem, demonstrating 

profound links between sustained attention and memory, both working memory (how many 

items held in mind) and long-term memory (whether an item is recognized as old or new). 

Understanding when and which aspects of attention and memory share dynamics inform our 

mechanistic understanding of each of these processes as well as how they interact. A complete 

understanding of attention and memory processes requires studying how they evolve and co-

evolve over time.  

 

 

 

 

 



 

2. Moment-to-moment fluctuations of attention 

 

Attention waxes and wanes from one moment to the next. We can be engaged one moment and 

disengaged the next. These moment-by-moment variations in attentional state may be driven by 

top-down or bottom-up factors or an interaction between the two. Even moments of better 

attention are multifaceted—the focus of attention can shift between external and internal states, 

guided by top-down goals or captured by salient information. The dynamic nature of attention 

may be most apparent in studies of sustained attention, which investigate how we maintain 

focus over time (Esterman & Rothlein, 2019; Fortenbaugh et al., 2017). In this section, we 

leverage sustained attention as a case study for a broader understanding of attentional 

dynamics. 

 

In sustained attention paradigms, participants are typically presented with a steady stream of 

stimuli. They are asked to detect rare targets (i.e., oddballs) that occasionally but infrequently 

occur during the stimulus stream. A key finding is that attention often lapses, as indexed by 

moments when participants fail to detect a rare stimulus. Continuous performance tasks (CPTs) 

provide a temporally rich readout of behavioral responses, including accuracy and response 

times (RTs). Notably, performance declines on sustained attention tasks over extended periods 

of time, an effect known as the vigilance decrement (Mackworth, 1948). Atop slow vigilance 

decrements, behavioral indices of attentional state (e.g., accuracy, RT speed, RT variability) 

also reveal how attention dynamically fluctuates over shorter timescales, ranging from seconds 

to tens-of-seconds (Castellanos et al., 2005; Rosenberg et al., 2025; Terashima et al., 2021). 

These behavioral indicators—including fast (Corriveau, Chao et al., 2025; deBettencourt et al., 

2018) and erratic (Esterman et al., 2013; Rosenberg et al., 2013) responding—predict when 

attention failures are most likely to occur. Although in many tasks fast RTs indicate engaged 

focus, in CPTs, speeding is a hallmark of automated, mindless responding. Erratic RTs likewise 



 

indicate suboptimal focus, potentially reflecting effortful performance more reliant on top-down 

control (Chidharom et al. 2025). 

 

While response speed and variability forecast upcoming attention failures in CPTs, 

neurophysiological measures offer opportunities to examine brain activity that precedes and 

predicts lapses in a wider variety of tasks and contexts. In particular, cognitive neuroscience 

techniques with high temporal resolution, such as electroencephalography (EEG), can measure 

the oscillatory brain dynamics before lapses. Scalp EEG studies, for example, observe 

increases in alpha power (approximately 8-12 Hz) and decreases in theta power (approximately 

4-7 Hz) before attentional lapses (Clayton et al., 2015; Mazaheri et al., 2009; O’Connell et al., 

2009). This is consistent with observations that alpha power decreases prior to successful visual 

perception (Ergenoglu et al., 2004; Hanslmayer et al., 2007; van Dijk et al., 2008) and theta 

power increases to support cognitive control (Cavanagh & Frank, 2014). Studies measuring 

intracranial EEG can access activity in higher frequencies as well as in specific functional 

networks, revealing high frequency broadband (70-170 Hz) activity differences in the default 

mode network (DMN) and dorsal attention network (DAN) before attention lapses (Kucyi et al., 

2020). Although functional magnetic resonance imaging (fMRI) has a much lower temporal 

resolution, comparisons of fMRI activity before lapses vs. correct responses have revealed 

reduced stimulus-specific activity and increased DMN, frontal, and parietal activity before lapses 

(Weissman et al., 2006). Finally, attention lapses are preceded by smaller pupils and linked to 

specific neuromodulatory states related to norepinephrine and locus coeruleus function 

(Unsworth & Robison, 2016a). As such, behavioral and neurophysiological tools provide 

complementary insight into when a lapse is likely to occur.  

 

Momentary lapses occur in the context of slower-fluctuating sustained attentional states 

(Rosenberg et al., 2025). These states—often discretized into “in-the-zone” states of stable, 

https://www.jneurosci.org/content/29/26/8604.short


 

successful responding and “out-of-the-zone” states of erratic, error-prone performance 

(Esterman et al., 2013; 2014b; Rosenberg et al., 2013)—are characterized by univariate and 

multivariate differences in brain activity (deBettencourt et al., 2015; Esterman et al., 2013; 

Rosenberg et al., 2015). That is, although sustained attention task performance overall engages 

canonical attention regions, including the prefrontal and parietal cortices as well as subcortical 

structures (Corbetta & Schulman, 2002; Langer & Eickoff, 2013), the relative contribution of 

different brain regions and networks varies within in-the-zone and out-of-the-zone states.   

 

Repeated evidence demonstrates that in-the-zone attentional states are characterized by 

increased DMN and decreased DAN activity (Esterman et al., 2013; Fortenbaugh et al., 2018; 

Kucyi et al., 2016; 2017) and co-fluctuation (a time point-by-time point measure of two regions’ 

covarying activity; Jones et al., 2024). These attentional states also map onto DMN- and DAN-

dominated brain states (patterns of activation and coactivation that cluster together in a low-

dimensional neural representational space), respectively (Song et al., 2023; Yamashita et al., 

2021). Although counterintuitive at first glance given the popular but simplistic conception of the 

DMN as a “mind wandering” or “off-task” network, increases in DMN activity are thought to 

reflect more automatic, practiced processing during in-the-zone states. In contrast, increased 

DAN activity in worse attentional states may reflect increased reliance on attentional control 

during these moments. First, during better attentional performance, these networks are more 

anticorrelated (Kucyi et al., 2020; Seeburger et al., 2024). Second, interactions between brain 

regions and networks beyond the DMN and DAN reflect evolving attentional states (Song & 

Rosenberg 2021). Data-driven analytic approaches have revealed, for example, large-scale 

functional networks whose dynamics predict attentional state changes during more artificial 

laboratory-based tasks (Jones et al., 2024; Kardan et al., 2022; Rosenberg et al., 2020) and 

more naturalistic scenarios such as watching movies (Song et al., 2021; Zuberer et al., 2021). 

Finally, information processing differs between in-the-zone and out-of-the-zone states. The 



 

fidelity of neural representations increases under better attentional states (Jackson et al., 2017; 

Rothlein et al., 2018). Heightened sustained attention is likewise accompanied by greater 

evidence of distractor processing, suggesting that, in these periods, successful performance is 

possible without actively filtering task-irrelevant information (Esterman et al., 2014b). Taken 

together, this evidence suggests that shifting attentional states are reflected in the activity and 

functional connectivity of widespread brain networks. 

 

The behavioral and neuropsychological work discussed so far reveals correlates of attentional 

lapses and states. Causal approaches, however, offer a more direct way to explore the role of 

neural activity in sustained attention dynamics. For example, increasing attention via 

neuropharmacological manipulations also results in increased strength of and activity in 

networks correlated with better attention (Lyu, Corriveau, et al., in prep; Manza et al., 2025; 

Rosenberg et al., 2016). The opposite is also true: decreasing attention with anesthetic agents 

results in decreased strength of attention-related networks (Chamberlain & Rosenberg, 2022; 

Rosenberg et al., 2020). In addition, methodological innovations enable researchers to monitor 

in real time the activity within specific brain networks (Sitaram et al., 2017; Stoeckel et al., 2014; 

Sulzer et al., 2013). The time-varying dynamics of sustained attention can be fed back to 

participants in real time via closed-loop neurofeedback, thereby directly modulating brain activity 

and enhancing sustained attention performance (deBettencourt et al., 2015; Mennen et al., 

2021). This real-time fMRI approach offers a promising avenue to directly test and modulate 

distributed patterns of functional connectivity that support sustained attention (Scheinost et al., 

2020; Yamashita et al., 2017). By directly altering brain function, causal methods move beyond 

observation to actively test how neural representations support sustained attention behavior.  

 

In sum, the dynamic nature of attention can be powerfully assayed through the lens of sustained 

attention. These studies reveal how attention varies over different time scales within individuals. 



 

Dynamics can be measured via behavior, including lapses, and tracked with cognitive 

neuroscience tools. These tools reveal that successfully sustaining attention encompasses 

multiple complex processes, including maintaining goal representations, detecting rare items, 

and inhibiting distracting information.  

 

 

3. Moment-to-moment fluctuations of memory 

 

Much like sustained attention, memory performance fluctuates over time. For example, recall 

the last time you met a new group of new people. You may have continued the conversation 

with one person’s name in mind but another’s—shared only seconds later—woefully forgotten. 

Such memory variability may be due to differences in the information itself (such as how salient 

or memorable it is; Bainbridge, 2019) as well as how it is encoded, maintained, or retrieved. 

Another non-exclusive possibility is that memory fluctuations are driven by shifting attentional, 

affective, and cognitive states that influence our ability to remember. Here, we examine this 

moment-to-moment variability in working memory and long-term memory before considering 

their interactions with fluctuating attention.  

 

3.a Working memory dynamics  

Over the course of an experiment, working memory performance changes. This is evident in 

variability across trials in both the number of items held in working memory (i.e., memory 

capacity; Adam et al., 2015; deBettencourt et al., 2019; Kozlova et al., PsyArXiv) as well as the 

the fidelity of a single representation (i.e., memory precision; Zhang & Luck, 2008). At the same 

time, working memory tasks give rise to canonical brain signatures, including EEG delay 

signatures (Luria et al., 2016; Vogel & Machizawa, 2004) and distributed fMRI brain activity in 

stimulus-specific and control regions (Christophel et al., 2017; Curtis & D’Esposito 2003; 



 

D’Esposito & Postle 2015). By examining how these brain signatures covary with capacity and 

precision, cognitive neuroscience sheds light on the mechanisms that give rise to working 

memory dynamics. For example, working memory trials on which people remember fewer items 

are associated with reduced measures of preparatory activity (Murray et al., 2011) and delay 

activity in EEG (Adam et al., 2018) and fMRI (Pessoa et al., 2002) as well as smaller pupil size 

(Robison & Unsworth, 2019). More successful trials are also reflected in better multivariate 

representations (Bettencourt & Xu, 2016; Rahmati et al., 2018; Sprague et al., 2016; Wan et al., 

2024). Causally implicating these neural substrates and oscillatory signatures are studies that 

demonstrate how transcranial magnetic stimulation (TMS) modulates working memory 

performance (Hamidi et al., 2008 & 2009; Riddle et al., 2020). In summary, working memory is 

inconsistent over time and investigating these inconsistencies can reveal important information 

about the neural underpinnings of working memory.  

 

Although some momentary memory lapses—like forgetting someone’s name as soon as they 

say it—can happen unexpectedly, there is evidence that often such failures are not isolated 

events, but rather reflect ongoing dynamics shaped by both pretrial states and recent content. 

Prior to stimulus presentation, neural activity, including posterior alpha (Myers et al., 2014) and 

frontal theta (Adam et al., 2015; 2018), predict upcoming working memory performance. That is, 

EEG provides access into general control states that may predetermine success. In addition, 

specific content from prior trials can influence working memory on an upcoming trial (Kiyonaga 

et al., 2017). Demonstrating the lingering effects of preceding trials on current neural 

representations, evidence for prior stimulus representations has been decoded from 

neuroimaging and electrophysiological data, including EEG (Bae and Luck, 2019; Zhang & 

Lewis-Peacock, 2024), fMRI (St. John-Saaltink et al., 2016; Sheehan & Serences, 2022), MEG 

(Hajonides et al., 2023) and spiking activity (Barbosa et al., 2020). That is, like attention lapses, 

working memory failures likely reflect slower-frequency dynamics.  

https://www.cell.com/neuron/fulltext/S0896-6273(02)00817-6
https://pubmed.ncbi.nlm.nih.gov/26595654/
https://postlab.psych.wisc.edu/wp-content/uploads/sites/2238/2024/08/Wanetal2024.pdf
https://www.jneurosci.org/content/34/23/7735?utm_source=TrendMD&utm_medium=cpc&utm_campaign=JNeurosci_TrendMD_0
https://www.jneurosci.org/content/34/23/7735?utm_source=TrendMD&utm_medium=cpc&utm_campaign=JNeurosci_TrendMD_0
https://www.jneurosci.org/content/34/23/7735?utm_source=TrendMD&utm_medium=cpc&utm_campaign=JNeurosci_TrendMD_0
https://direct.mit.edu/jocn/article/30/9/1229/28908/Contralateral-Delay-Activity-Tracks-Fluctuations
https://direct.mit.edu/jocn/article/30/9/1229/28908/Contralateral-Delay-Activity-Tracks-Fluctuations


 

 

Although we have so far focused on trial-to-trial working memory dynamics—which typically 

occur on the order of seconds to tens of seconds—a growing body of work investigates 

cognitive and neural dynamics within trials as information is held in mind during a delay period. 

This work reveals time-varying modulation of cognitive and neural stimulus representations on 

the order of milliseconds to seconds (Adam et al., 2022; Buschman & Miller, 2022; Stokes, 

2015). Additionally, working memory behavioral performance, eye gaze, pupil size, and neural 

activity can be modulated while information is actively being held in mind during a delay interval 

by retrospective cues (Griffin & Nobre, 2003; Souza & Oberauer, 2016; van Ede et al., 2019; 

Zokaei et al., 2019). Thus, dynamics of working memory occur at a wide range of temporal 

scales. A comprehensive model of working memory must account for, and understand what 

gives rise to, these dynamics. 

 

 

3.b Long-term memory dynamics 

One of the hallmark characteristics of long-term memory is that it is imperfect; we do not 

remember everything we encounter. For instance, how many new acquaintances’ names do you 

remember hours, days, and weeks later? Experimentally, the stimulus properties, cognitive 

states, and neural signatures of this phenomenon have been examined by contrasting brain 

activity and behavior surrounding remembered vs. forgotten items, known as the subsequent 

memory effect (Paller & Wagner, 2002). Some variance in what we remember can be driven by 

features of the item itself, for example, its valence or memorability (Bainbridge, 2019). However, 

memory is also critically shaped by internal states present when information is encountered, 

processed, and retrieved.  

 



 

Lingering mnemonic states that influence whether an item will be remembered can be detected 

even before a stimulus appears. For example, memory judgments for an upcoming item can be 

biased by retrieval states from the previous trial (Duncan et al., 2012; Patil & Duncan, 2018). 

EEG provides powerful and temporally resolved insight into these prestimulus states. Using 

multivariate analysis of EEG, it is possible to decode retrieval states and predict memory 

outcomes (Long & Kuhl, 2019). In addition, oscillatory activity during the prestimulus period is 

associated with memory performance. Theta power prior to an item predicts long-term memory 

encoding (Fell et al., 2011; Fellner et al., 2013; Guderian et al., 2009; Merkow et al., 2014) and 

retrieval (Addante et al., 2011). Additionally, lower prestimulus alpha power at encoding is 

associated with successful long-term memory (Weidemann & Kahana, 2021). Prestimulus 

activity can also be measured by evoked brain activity, including EEG waveforms (Otten et al. 

2006) and fMRI stimulus-related activity (Turk-Browne et al., 2006). In sum, prestimulus neural 

activity reflects ongoing mnemonic states that shape the likelihood of remembering.   

 

An important observation is that mnemonic states unfold over longer timescales than single 

trials. A well-documented finding from free recall paradigms is the temporal clustering of nearby 

items (Howard & Kahana, 2002; Manning et al., 2014; Polyn & Kahana, 2008). This behavior is 

attributable to slow fluctuations in internal context, measurable by multivariate analysis of EEG 

(Manning et al., 2011) and fMRI (Chan et al., 2017; Polyn et al., 2005). Items encoded 

simultaneously can also become contextually bound together (Gardner-Medwin, 1976; Horner & 

Burgess, 2013) and correlated with fMRI activity within the hippocampus (Horner et al., 2015). 

These dynamics may serve a key adaptive purpose, segmenting information that is presented 

over time into events (DuBrow et al., 2017; Shin & DuBrow, 2021). Thus, state dynamics over 

longer timescales critically shape whether and how we remember information.  

 



 

The identification of dynamic memory states presents a powerful opportunity for causal 

manipulation and real-time intervention. Memory encoding can be deliberately triggered during 

optimal or suboptimal moments, based on ongoing brain states (Rudoler et al., 2024; Salari and 

Rose, 2016; Yoo et al., 2012). Brain stimulation offers another way to manipulate memory 

(Hebscher & Voss, 2020; Yeh & Rose, 2019; Zhao & Woodman, 2021), and can be particularly 

powerful when paired with real-time decoding (Ezzyat et al, 2018; Kragel et al., 2025). Real-time 

decoding also enables adaptive interventions, such as prioritizing poorly encoded information 

for restudying (Fukuda & Woodman, 2015). In addition, real-time fMRI and neurofeedback can 

bias memory reactivation and retrieval (deBettencourt et al., 2019; Koizumi et al., 2016; Peng et 

al., 2024; Taschereau-Dumouchel et al., 2018). Identifying and intervening upon mnemonic 

state dynamics offers a window into how our memory can be shaped over time.  

 

4. Considering attention and memory dynamics together 

While there is consensus that both attention and memory exhibit intrinsic fluctuations, most 

often these fluctuations are examined in isolation. In the following sections, we describe work 

that combines concurrent measurements of attention and working and long-term memory to 

examine whether, when, and how their dynamics interact. By investigating these processes in 

tandem, we examine their complex and evolving relationships. 

 

4.a Dynamics reveal that attention and working memory are tightly coupled 

Attention and working memory are closely conceptually related as working memory involves 

selective attention to perceptual information and internal representations of items held in mind 

(Adam & deBettencourt, 2019; Awh et al., 2006; Chun, 2011; Cowan 1998; Oberauer, 2019). 

Despite this close connection, most conceptualizations of attention and working memory also 

acknowledge that these constructs are not synonymous. Here, we first consider the relationship 

between attention and working memory through shared variance across individuals and similar 



 

neural representations. Then, we discuss how interleaving attention and working memory tasks 

provides critical insight into when and how their dynamics are intertwined.  

 

Both attention and working memory abilities vary enormously across the population. Leveraging 

this variation reveals that attention and working memory abilities are correlated across 

individuals: Individuals who are better at sustaining attention also have higher working memory 

capacity (Kane et al., 2007; Unsworth et al., 2010; Unsworth & Robison, 2020). Neural analyses 

also demonstrate how sustained attention and working memory are related across individuals. 

Functional-connectivity-based models trained to predict individual differences in one domain 

generalize to predict individual differences in the other (Avery et al., 2020; Kardan et al., 2022; 

Yoo et al., 2022). That is, behavioral and neural analyses of individual differences reveal a close 

link between sustained attention and working memory.  

 

Another way to examine shared neural mechanisms is by testing whether attention and working 

memory engage similar cognitive and neural processes. This can be observed indirectly by the 

impact on performance of simultaneous dual attention and working memory tasks. Engaging in 

a distracting attention task while maintaining items in working memory reduces memory 

performance (Souza & Oberauer, 2017). Analyses of neural data can also reveal commonalities 

between these processes. First, neuroimaging and electrophysiological recordings from humans 

and non-human primates suggest that items elicit similar neural responses whether they are 

perceptually attended or maintained in working memory (Awh & Jonides, 2001; Gazzaley & 

Nobre, 2012; Ikkai & Curtis, 2011; Panichello & Buschman, 2021). Likewise, regions implicated 

in one process show overlapping activity in another: the frontal eye fields and intraparietal 

sulcus, for example, support goal-directed attention and are activated during working memory 

maintenance (Pessoa et al., 2002). Second, changes in common neural features predict 

fluctuations in both attention and working memory. For example, increased frontal theta power 



 

and decreased posterior alpha power predict better attention and working memory performance 

(Adam et al., 2015; 2018; Myers et al., 2014; van Ede et al., 2017).  

 

Thus, attention and working memory abilities are correlated across individuals and also 

implicate similar neural substrates. In addition, both attention and working memory change 

across multiple time scales. But are those dynamics themselves linked? This question has been 

challenging to answer, as dynamics have traditionally been observed using different stimuli in 

distinct paradigms. We propose the most compelling way to answer this is by concurrently and 

even simultaneously tracking attention and working memory fluctuations. If attention and 

working memory co-fluctuate, this suggests an intricate link between them.  

 

A study by deBettencourt et al. (2019) investigated whether sustained attention and working 

memory exhibit simultaneous dynamics by interleaving sustained attention and working memory 

tasks. Moments of better sustained attention (slower, more careful responding) correlated with 

moments of better working memory (more items remembered). Furthermore, this work 

presented a key innovation to directly leverage ongoing sustained attention. Fluctuations of 

sustained attention fluctuations were monitored in real time to specifically probe working 

memory when attention was extremely high or low (Figure 2). Participants remembered more 

items when probes appeared in a high vs. low attentional state, revealing that working memory 

and sustained attention dynamics are themselves deeply intertwined.  

 

A follow-up study replicated these behavioral links between attention and working memory and 

explored pupillary correlates (Keene et al., 2022). This work also developed real-time pupil 

triggering, such that working memory probes were triggered when pupil size was exceptionally 

large or small. These observations that sustained attention and working memory covary 

together in time provide strong evidence that these constructs rely on a common resource store 



 

that dictates ability from moment to moment. Furthermore, the technological development of 

real-time triggering designs make important suggestions about how to leverage these dynamics 

to enhance attention and working memory behavior. 

  

Examining attention and working memory dynamics in tandem also reveals dissociations in 

these processes. While attentional dynamics correlate with the number of items in working 

memory on a given trial (capacity), they are not related to the precision of working memory 

representations (deBettencourt et al., 2019). This finding is in line with previous work that 

capacity and precision may comprise separable features of working memory (Fukuda et al., 

2010; Murray et al., 2011). Furthermore, while attention and memory share some neural 

mechanisms, EEG (Hakim et al., 2019) and fMRI (Sheremata et al., 2018) findings also show 

dissociation in neural activity underlying these constructs. Indeed, working memory likely 

comprises multiple subcomponents, including attentional control (Adam et al., 2015; Hakim et 

al., 2020). Although attention can be deployed to representations in working memory, items 

need not be the focus of attention to be remembered (Olivers et al., 2011; Lewis-Peacock et al., 

2012; LaRocque et al., 2015). Finally, subjective self-reports of moment-to-moment fluctuations 

of attentional states may be associated with working memory performance fluctuations 

(Unsworth & Robison, 2016b), but they may reflect distinct attentional states (Chidharom et al., 

2025). Thus, examining the shared dynamics of attention and working memory can shed light 

on the intricate and complex relationship between the subcomponents of these processes.  

 

 

 



 

 

 

 

Figure 2. Linking attention and working memory dynamics (A) A real-time triggering 

approach explores synchronous fluctuations in attentional state and working memory (WM) 

capacity. A sustained attention task was used to monitor fluctuations of attention in real time 

based on the speed of responding (fast or slow). This method enabled researchers to probe 

WM during moments of high and low sustained attention. Such real-time monitoring techniques 

are valuable tools for exploring cognitive dynamics and developing individualized and adaptive 

systems that respond to moment-to-moment changes in attentional state (B) WM performance 

was better during periods of better sustained attention, as participants recalled more colors 

correctly when attention was high (p<.01). These findings directly linked momentary lapses of 

sustained attention with the amount of information held in mind. Figure adapted from 

deBettencourt et al., 2019. 

 

 

 

 



 

4.b Attention dynamics drive long-term memory  

 

We might assume that paying better attention to something will help us remember it later on, but 

until recently surprisingly little work had tested this relationship empirically. Rather, 

understanding how fluctuating attentional states drive memory has been a challenge for the 

field. Here we will examine the relationship between sustained attention and long-term memory 

through their shared dynamics.   

 

Attention and long-term memory share common sources of variability at both behavioral and 

neural levels. Across individuals, higher sustained attention is correlated with better long-term 

memory performance (Corriveau, Chao et al., 2025; deBettencourt et al., 2021), though this 

relationship may be particularly strong among children and young adults (Decker et al., 2023b; 

Tran et al., 2025). Factor analyses suggest that sustained attention ability may, in fact, be more 

similar to long-term memory than to other attentional components like attentional control (Zhao 

et al., bioRxiv). Additionally, the recruitment of overlapping brain mechanisms for attention and 

long-term memory supports the close relationship between these functions (Aly & Turk-Browne 

2017; Chun & Turk-Browne, 2007; Kuhl & Chun, 2014; Long et al., 2018). Retrieving locations 

from long-term memory activates similar multivariate representations as attending to spatial 

locations, evident in both EEG alpha topography (Sutterer et al., 2019) and fMRI activity in 

retinotopic regions (Vo et al., 2022). In addition, EEG activity patterns related to retrieval state 

are activated during a spatial attention task (Long 2023). Memory encoding recruits activity in 

the parietal cortex, specifically regions canonically associated with attention (Hutchinson et al., 

2014; Turk-Browne et al., 2013; Uncapher et al., 2011; c.f. Hutchinson et al., 2009). On the 

other hand, attention is represented in the hippocampus, a region tightly linked with long-term 

memory (Aly & Turk-Browne 2016b; Cordova et al., 2019; Dudovic et al., 2011). Moreover, 

https://learnmem.cshlp.org/content/16/6/343.short


 

some of the shared relationship between attention and memory may be mediated by reliance on 

shared neuromodulatory indices (Decker & Duncan, 2020; Tarder-Stoll et al., 2020). 

 

Trial-level fluctuations of attention within individuals also predict variability in long-term memory 

performance (deBettencourt et al., 2021; Mirjalili & Duarte, 2025). Activity in frontoparietal 

attention network regions predicts successful long-term memory encoding (Turk-Browne et al., 

2013), as do attention-related patterns of activity in the hippocampus (Aly & Turk-Browne, 

2016a). Attentional state prior to retrieval, indexed by posterior alpha power and pupil size, 

predicts memory success (Madore et al., 2020). These findings all support the idea that long-

term memory shares representations with attention more broadly, and particularly sustained 

attention.   

 

More recently, research has directly examined how moment-to-moment fluctuations of 

sustained attention relate to long-term memory (Figure 3). Findings show that periods of better 

sustained attention lead to better memory (deBettencourt et al., 2018). This observation has 

since been replicated and extended by a growing body of research (Corriveau, Chao et al., 

2025; Corriveau et al., 2024; Decker et al., 2023b; Wakeland-Hart et al., 2022). Findings 

robustly show that higher sustained attentional state, measured by more accurate, slower, and 

less variable responding, covaries with better recognition memory for stimuli that appear during 

those moments.  

 



 

 

Figure 3. Predicting long-term memory from moment-to-moment fluctuations in 

sustained attention (A) An experiment links sustained attention dynamics with long-term 

memory. Attentional state was tracked using trial-by-trial fluctuations in behavioral responses. 

Attention dynamics not only predicted lapses in attention in the moment but also critically related 

to which items were remembered or forgotten later on. (B) Recognition memory was 

significantly better on trials with higher attentional states (p<0.001), showing that attention 

dynamics strongly impact what we remember. This suggests that even subtle fluctuations in 

attentional state play a profound role in memory formation. Figure adapted from Corriveau, 

Chao et al., 2025. 

 

One study by deBettencourt et al. (2018) exploited attentional fluctuations to demonstrate the 

direct link between sustained attention and memory. Response speed was monitored in real 

time to determine moments when participants were most likely to be in an engaged state 

(showing slow RTs) or a disengaged attentional state (showing fast RTs). During these 

moments, probes were inserted requiring participants to change their prepotent response. Not 

only did the manipulation work—participants were more likely to lapse during worse attentional 

states—but memory was also worse for probe items presented in poor attentional states. This 

work was expanded upon to show that attentional states are independent from memorability 

(Wakeland-Hart et al., 2022). Leveraging both attention and memorability in real time offers a 



 

powerful strategy to individually tailor which information is encoded when (Roberts & Pruin et 

al., 2025). These findings not only establish a direct link between attention and memory 

dynamics but also showcase the power of real-time, adaptive cognitive interfaces to dissect and 

unravel the complex relationship between attention and memory.  

 

Attentional fluctuations at encoding also have residual effects on memory encoding of 

information outside the focus of attention. Work by Corriveau and Chao et al. (2025) presented 

pairs of images during the sustained attention task, one of which was task-irrelevant. Increases 

in attentional state not only predicted better memory for the task-relevant images but also for the 

irrelevant images. A conceptual replication of this work utilized multisensory audio-visual stimuli 

(Corriveau et al., 2024). Successful recognition of a task-relevant stimulus (e.g., a picture) 

predicted memory for its irrelevant pair (e.g., a sound), suggesting that sustained attentional 

state at encoding affected relevant and irrelevant stimuli similarly. Together, these findings 

suggest that better sustained attention does not sharpen filtering, but rather reflects a greater 

overall capacity of the attentional system.  

 

Sustained attention paradigms, particularly their ability to reveal attention dynamics, are 

valuable for examining whether and how attention impacts memory and learning more broadly. 

For example, the attentional boost effect describes a phenomenon in which rare targets 

transiently improve memory for information encountered at the same time (Lin et al., 2010; 

Swallow & Jiang, 2010). The proposed mechanism for this effect suggests that detecting rare 

targets transiently and broadly boosts perceptual processing, facilitating encoding for the 

context that accompanies the target (Swallow & Jiang, 2013). However, while the detection of 

rare targets improves recognition memory, it does not alter temporal memory (Wang & Egner, 

2023). Also, sustained attention does not appear to impact temporal clustering of memory recall 

(Jayakumar et al., 2023). Finally, this approach also extends beyond memory, for example to 



 

examine the relationship with learning. There is evidence that attentional state impacts the 

ability to learn statistical regularities, with participants exhibiting faster responses for anticipated 

stimuli under high attentional states (Zhang & Rosenberg, 2024; although, see Decker et al., 

2023a). There is also evidence for a close relationship between sustained attention and reward 

(Esterman et al., 2014a; Trach et al., 2025).  

 

5. Toward a dynamic framework for cognition 

 

Attention and memory are two of the most studied constructs in cognitive psychology and 

neuroscience. However, this work often assumes both functions are stable and binary—i.e., 

information is either attended or unattended, remembered or forgotten—and disregards the fact 

that they fluctuate over time. Past work has been fruitful for characterizing attentional and 

mnemonic processes as a whole, and assuming stability may have been useful for identifying 

trademark properties of these functions. With this groundwork laid, we propose that future 

research consider changes in attention and memory over time to more fully understand these 

inherently dynamic functions. In particular, methods incorporating cognitive dynamics may seek 

to answer a host of open questions. 

 

How can dynamic interactions advance models of attention and memory? 

Incorporating the dynamic properties of both attention and memory into computational models 

offers new opportunities to better capture the complexity of cognition and behavior. Recent work 

shows that modeling attentional features improves computational models of memory 

performance (Adam et al., 2015; Hakim et al., 2020) as well as machine learning decoding 

(Mirjaili & Duarte, 2025). More broadly, fluctuating attentional states during encoding and 

retrieval may account for memory variability that has often been attributed to memory processes 

alone, suggesting a need to revise memory theories accordingly. Conversely, memory retrieval 



 

can shape future attentional deployment, implying that dynamic models of attention should also 

incorporate memory-based influences. In addition, attention and memory fluctuations are 

observed and change over an enormous range of timescales (Rosenberg et al., 2025), ranging 

from sub-second (i.e., theta) rhythms (Biba et al., PsyArXiv; Fiebelkorn & Kastner, 2019; 

Landau & Fries, 2012) to the lifespan, as both attention and memory generally peak in early to 

middle adulthood (Alloway & Alloway, 2013; Fortenbaugh et al., 2015; Ronnlund et al., 2005). 

Modeling the bidirectional, time-varying interactions between attention and memory may provide 

a more unified framework for understanding human cognition. Joint measurement of attention 

and memory dynamics will be critical for uncovering the extent to which observed mnemonic 

and attentional phenomena emerge from shared underlying fluctuations, distinct mechanisms, 

or their interaction. 

 

How can understanding attention and memory dynamics inform technology and translation? 

A deeper understanding of attention and memory dynamics could have broad impacts, with 

applications across technology, education, and healthcare. Attention and memory have already 

inspired key innovations in artificial intelligence (Lindsay, 2020), and a fuller understanding and 

implementation of their dynamic properties may lead to more flexible and adaptive AI 

architectures. In education, attention and memory are essential for achieving learning goals, 

and tailoring instructional strategies to account for their natural fluctuations could significantly 

enhance educational effectiveness. In health care, attention and memory impairments are 

implicated in a range of psychiatric and neurological disorders, suggesting that tracking and 

modeling their fluctuations could support early detection and personalized interventions. 

Ultimately, insights into the dynamic nature of attention and memory could drive innovations 

across domains, shaping tools that are more responsive to the complexity of human cognition. 

 

How can brain-computer interfaces harness attention and memory dynamics in real time? 

https://scholar.google.ca/citations?view_op=view_citation&hl=en&user=JS7zVtwAAAAJ&citation_for_view=JS7zVtwAAAAJ:2osOgNQ5qMEC


 

Understanding the dynamic nature of attention and memory unlocks powerful opportunities for 

real-time prediction and intervention. Because cognitive states naturally fluctuate over time, 

knowing the current state can offer strong predictive leverage for anticipating what comes next. 

When attention wanes, catastrophic lapses become more likely, working memory capacity 

shrinks, and long-term memory formation is impaired. Advanced signal processing and analytic 

frameworks now allow researchers to track these fluctuations in real time using cognitive 

neuroscience and behavior tools (Shelat et al., 2024). Real-time monitoring of behavioral and 

neural signals enables researchers not just to observe, but to intervene in the moment. 

Approaches such as real-time triggering, neuroadaptive task designs, and closed-loop 

neurofeedback leverage continuous readouts of cognitive state to dynamically adjust stimuli, 

optimize performance, or directly modulate neural activity (Figure 4). By moving beyond static 

snapshots and toward real-time dynamic monitoring, we can begin to both predict—and 

ultimately shape—the unfolding trajectory of mental processes. 

 

 

 

 



 

 

Figure 4. Adaptive designs enable the tracking of dynamic states in real time. Patterns of brain 

activity and behavior provide insight into ongoing processes which can be used to trigger timely 

interventions or guide real-time changes in the environment. Such closed-loop interfaces not 

only deepen our understanding of the complex and intricate relationship between attention and 

memory but also offer a powerful framework for probing the dynamic nature of cognition itself. 

 

 

6. Conclusion 

 

While we all have personal experience with what it feels like to attend and remember—as well 

as what it feels like when these abilities fail—the cognitive and neural dynamics underlying 

these phenomena are complex. Successful attention and memory may arise from some 

combination of external factors and drifting internal states whose interactions dictate ongoing 



 

cognition. Investigating fluctuations in attention and memory provides a critical lens into 

understanding these processes in isolation, as well as their interaction. The advancement of 

cognitive neuroscience techniques enables the possibility of probing, leveraging, and perturbing 

brain states to better understand how slowly-evolving states affect cognition and behavior. 

Therefore, while the dynamics of attention and memory may shape daily experience, 

neuroscience may also hold the keys to shaping cognitive dynamics in turn. 
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